
Reduced-rank Stochastic Regressions with a Sparse
Singular-Value-Decomposition

Kun Chen, Kung-sik Chan, Nils Chr. Stenseth

May 15, 2010

Abstract

For a reduced-rank multivariate stochastic regression model of, say, rank r,
the regression coefficient matrix can be expressed as a sum of r unit-rank matrices
each of which is proportional to the outer-product of the left and right singular
vectors. For facilitating interpretation, it is often desirable that these left and
right singular vectors be sparse or enjoy some smoothness property. We propose
a regularized reduced-rank regression approach for solving the afore-mentioned
problem. Computation algorithms and regularization parameter selection meth-
ods are developed, and the properties of the new method are explored both the-
oretically and by simulation. We apply the proposed approach to analyzing the
Norwegian Skagerrak coastal cod abundance data for simultaneously capturing
the spawning peak and identifying significant North Sea larval drift effects among
coastal fjords. We also apply the proposed model to the biclustering problem us-
ing microarray data.

1 Introduction

We consider the reduced-rank regression model,

st = Cgt + et, t = 1, ..., T, (1.1)

where st = (s1t, ..., smt)
T is an m × 1 vector of response variables, gt = (g1t, ..., g

T
nt) is

an n× 1 vector of predictor variables, C is an m× n regression coefficient matrix with
rank(C) = r ≤ min(m,n) , and et = (e1t, ..., emt)

T is the m × 1 vector of random
errors, which is assumed to be independently and identically distributed (i.i.d) with
mean vector E(et) = 0 and covariance matrix Cov(et) = Σe, an m×m positive-definite
matrix. We assume T observations are available, and define the m × T data matrix
S = [s1, ..., sT ], the n× T covariate matrix G = [g1, ...,gT ] and the m× T error matrix
E = [e1, ..., eT ]. The model in terms of the complete data can be written as

S = CG+ E.
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The unknown parameters in the above model are the rank r regression coefficient matrix
C and the error covariance matrix Σe. The classical reduced-rank regression criterion
is given by

tr[Γ(S−CG)(S−CG)T ], (1.2)

where C is restricted to be a reduced-rank matrix, and Γ is an m×m positive definite
matrix usually choosing to be an identity matrix or Σ̃−1

e , where Σ̃e is some initial
estimates of Σe. In practice, a legitimate estimate of the covariance matrix that is
positively definite might be hard to obtain, especially for high dimensional data. Here
we mainly focus on the case when Γ is identity matrix. The methodology can be easily
extended to the latter case.

One immediate problem of the reduced-rank regression is the identification of the
rank of the regression coefficient matrix. It is well-known that principal component
analysis and canonical correlation analysis can be regarded as special cases of reduced-
rank regression (Izenman, 1975). The relationship between canonical correlation anal-
ysis and reduced-rank regression enables us to estimate the rank by testing whether
certain correlations are zero, which leads to the likelihood ratio test for testing the
hypothesis that rank(C) = r, see Anderson and Anderson (1984). Hence, an approach
to identify the rank is to adopt the smallest value of r for which H0 : rank(C) = r
is not rejected. Other tools for the specification of the rank include the AIC criterion
(Akaike, 1974), the BIC criterion (Schwarz, 1978) and cross-validation (Stone, 1974),
based on the predictive performance of models of various ranks. More recently, Yuan
et al. (2007) proposed a novel penalized least squares approach to conduct dimension
reduction and coefficient estimation simultaneously in the multivariate linear model.
The penalty they considered encourages the sparsity among singular values so that the
rank can automatically be determined as the number of nonzero singular values. In
this paper, we assume the rank of the coefficient matrix has been correctly identified,
and our goal is to improve the coefficient matrix estimation.

The rank-r regression coefficient matrix C can be expressed as a sum of r unit-rank
matrices each of which is proportional to the outer-product of the left and right singular
vectors, i.e.

C = UDVT =
r∑

k=1

dkukv
T
k =

r∑
k=1

Ck (1.3)

where U = [u1, ...,ur] consists of r left singular vectors, V = [v1, ...,vr] consists of r
right singular vectors, D = diag(d1, ..., dr) is a diagonal matrix with positive singular
values d1 ≥ ... ≥ dr on its diagonal, and Ck = dkukv

T
k is the layer-k unit-rank matrix of

C. This singular value decomposition (SVD) representation shows that C is composed
of r orthogonal layers of different importance, and each layer provides a distinct channel
relating the response variables to the explanatory variables.

For facilitating interpretation, it is often desirable that these left and right singu-
lar vectors be sparse or enjoy some smoothness property. This is motivated by two
applications we consider in the article. The first is an ecological application, in which
we analyze the Norwegian Skagerrak coastal cod abundance data for simultaneously
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capturing the spawning peak and identifying significant North Sea larval drift effects
among coastal fjords. It is hypothesized that among 18 coastal fjords under considera-
tion, only the fjords which are exposed to the North Sea could potentially receive larva
drift from outside sources. Hence the left singular vector, which turns out to represent
the larval drift effects, is believed to be sparse. In the mean time, the right singular vec-
tor, which represent the spawning effects over a 45-day period, is believed to be smooth
in time and peak at some point in between. In the second application, the goal is to
identify sets of biologically relevant genes that are significantly expressed for certain
cancer types using microarray expression data. The data consist of expression levels of
thousands of genes, measured from a much smaller number of subjects, who are known
to be either normal subjects or patients with different types of cancer. To be able to
simultaneously identify related genes and subject groups, making use of the grouping
information, adjusting for the covariate effects, and promoting sparsity in estimation
are all very important.

We propose a regularized reduced-rank regression approach for solving the afore-
mentioned problems. To induce sparsity in a singular vector, a suitable penalty term,
e.g. a multiple of its L1 norm, could be added to the minimization objective in (1.2).
In some applications, there are cases when the right singular vectors are believed to
be smooth in some known covariate h. Under such circumstance, a suitable smoothing
basis can be used to expand the right singular matrix V, i.e. V = QV∗, where Q is
an n× n∗ transformation matrix whose columns consist of basis functions evaluated at
each ht, and V∗ is the n∗ × r transformed coefficient matrix on which sparsity penalty
can then be imposed. By redefining G to be QTG, the model reduces to the case of
sparsity. Without lost of generality, here we propose to estimate C by minimizing the
following objective function with respect to the triplets (dk,uk,vk) for k = 1, ..., r:

1

2
tr{[S− (

r∑
k=1

dkukv
T
k )G][S− (

r∑
k=1

dkukv
T
k )G]T}+

r∑
k=1

Pe(λk, (dk,uk,vk)), (1.4)

where Pe(·) is some penalty function, and λks are the regularization parameters con-
trolling the degrees of penalization.

To prompt sparsity in uk and vk, we consider the class of adaptive lasso penalties
(Zou, 2006). Specifically, we consider

Pe(λk, (dk,uk,vk)) = λk

m∑
i=1

n∑
j=1

wijk|dkuikvjk|, (1.5)

where the wijks are possibly data-driven weights, which we will discuss later. One may
also consider a penalty that is additive in uk and vk:

P (λk, (dk,uk,vk)) = λk1

m∑
i=1

w1,ik|dkuik|+ λk2

n∑
j=1

w2,jk|dkvjk|, (1.6)

where λk1 and λk2 are two different regularization parameters. The penalty in (1.6)
allows different degrees of sparsity to be imposed on uk and vk. This flexibility comes at
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the cost of introducing extra regularization parameter, which reduces the computation
efficiency. Meanwhile, the penalty term in (1.5) uses only one regularization parameter.
However, due to its multiplicative form, it actually penalizes each SVD layer entrywisely,
which leads to automatic adjustment of the degrees of sparsity between uk and vk.
Therefore nothing is lost in terms of identifying the true sparse structure. Here, we
mainly focus on the penalty (1.5), and the methodology can be easily extended to the
penalty (1.6).

The rest of the article is organized as follows. We develop the methodology for the
unit rank case in Section 2. We then discuss the extension to higher rank cases in
Section 3. Two applications and simulation studies illustrating our method are given
in Section 4. Some asymptotic results of the proposed method are presented in Section
5. We then conclude in Section 6.

2 Sparse Unit-rank Regression

In this section, we present the details of fitting the penalized regression model in (1.4)
with the penalty given as (1.5) when the true coefficient matrix C is of unit rank. We
then present the extension to higher rank cases in Section 3.

2.1 Optimization algorithm and Initial Values

The problem here is to minimize the following penalized sum-of-squares criterion with
respect to the triplets (d,u,v),

1

2
tr[(S− duvTG)(S− duvTG)T ] + λ

m∑
i=1

n∑
j=1

wij|duivj|. (2.1)

where duvT is the SVD of the coefficient matrix C; W = (wij)m×n consists of possibly
data driven weights.

Following Zou (2006), the weights can be chosen as

W = |C̃|−γ = |d̃ũṽT |−γ

where d̃ũṽT is the SVD of a
√
T -consistent estimator C̃ of C, e.g. the classical reduced-

rank least square estimator given in Section 5, and γ is a positive tuning number. Note
that choosing γ = 0 corresponds to the lasso fit (Tibshirani, 1996). In the following,
we let wd = |d̃|−γ, w1 = (w1,1, ..., w1,m)

T = |ũ|−γ, w2 = (w2,1, ..., w2,n)
T = |ṽ|−γ,

W1 = diag(w1) and W2 = diag(w2) be given.
The model admits a biconvex structure in u and v. For fixed v, minimization of

(2.1) with respect to (d,u) becomes minimization with respect to ǔ = dW1u of

1

2
||y−X(v)ǔ||22 + λ(v)

m∑
i=1

|ǔi| (2.2)
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where y = vec(ST ), X(v) = W−1
1 ⊗ (GTv), and λ(v) = λwd(

∑n
j=1 w2,j|vj|). This can be

recognized as a lasso regression problem with respect to ǔ, without an intercept term.
On the other hand, for fixed u, minimization of (2.1) with respect to (d,v) becomes

minimization with respect to v̌ = dW2v of

1

2
||y−X(u)v̌||22 + λ(u)

n∑
j=1

|v̌j| (2.3)

where X(u) = u⊗GTW−1
2 , λ(u) = λwd(

∑m
i=1 w1,i|ui|), and y is defined as above. Again,

this is a lasso regression problem with respect to v̌, without an intercept term.
We can take advantage of the biconvex structure of the objective function (2.1) in

optimization. Here are the steps of our numerical algorithm for a fixed λ:

Sparse Unit-rank Regression Algorithm

1. Choose an initial value for v;

2. Given fixed v, solve lasso problem (2.2) to get ǔ by either LARS algorithm (Efron
et al., 2004) or coordinate descent algorithm (Friedman, 2007). Update û and d̂
by normalizing W−1

1 ǔ.

3. Given fixed u, solve lasso problem (2.3) to get v̌ by either LARS algorithm or
coordinate descent algorithm. Update v̂ and d̂ by normalizing W−1

2 v̌.

4. Repeat steps 2-3, until ûd̂v̂T converges according to some stopping criterion.

The algorithm described above uses a block coordinate descent structure with two
overlapping blocks of parameters, i.e. (d,u) and (d,v). Within each block, the model is
transformed to a lasso regression model so that the existing fast algorithms for the lasso
can be directly applied. It is clear that the criterion function is monotone decreasing
along the iterations. The algorithm is therefore stable and guaranteed to converge,
although not necessarily to the global minimum of the objective function. The biconvex
optimization problems may have multiple local minima as in general they are global
optimization problems, which requires more complicated algorithms to solve (Gorski
et al., 2007). Nevertheless, we have not observed this to be a significant problem here.

The estimated coefficients vary with λ and produce a path of solutions regularized
by λ. Based on numerical experiments, it appears that the solution paths for the above
methods are continuous, but are not piecewise linear, unlike those for the lasso. In
practice, the range of λ values one is interested in equals [0, λmax], where λmax is the
value at which all penalized coefficients are zero. Because the paths are continuous, a
reasonable approach of choosing initial values is to start at λmax and use the estimate
from the previous value of λ as the initial value for the next value of λ. The following
lemma determines λmax.
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Lemma 1. Denote S = [s(1), ..., s(m)]
T and G = [g(1), ...,g(n)]

T . Then

λmax = max{| 1

wij

sT(i)g(j)|, i = 1, ...,m; j = 1, ..., n.}

Moreover, let (i∗, j∗) = argmax(i,j)| 1
wij

sT(i)g(j)|, then the last nonzero solution of (2.1)

denoted as (u(0),v(0)) is given by

u
(0)
i∗ = 1; u

(0)
i = 0, i ̸= i∗;

v
(0)
j∗ = 1; v

(0)
j = 0, j ̸= j∗.

Proof : The minimization problem (2.1) has the same λmax as the lasso regression model

1

2
||y−Hρ||22 + λwd

mn∑
i=1

|ρi|

where y = vec(ST ), H = W−1
1 ⊗ (GTW−1

2 ) and ρ = (ρ1, ..., ρmn)
T is an mn× 1 vector.

Then λmax can be obtained as above by the KKT condition for lasso.

To find the solution path, we can start at λmax − ϵ using (u(0),v(0)) as initial values
where ϵ is a very small positive number, and proceed towards 0 or to a minimum value
λmin at which the model becomes excessively large or ceases to be identifiable. This
approach works very well in practice, and the algorithm usually converges within only
a few iterations. Note that the reversed approach, which starts from small λ and goes
toward large λ, may fail sometimes. This is because when λ is large, without a carefully
chosen initial value, the inner updating step could produce zero solution for either left
or right singular vector so that the algorithm can not proceed.

For all the numerical results in this paper, we follow the approach of Friedman et al.
(2010) and compute solutions along a grid of 100 λ values that are equally spaced on
the log scale.

2.2 Regularization Parameter Selection

Once a regularization path has been fit, it is important to be able to choose an optimal
point along the path. One common method that is used in practice is cross-validation
(CR), based on the predictive performance of models (Stone, 1974). For small-scale
problems, the optimal λ can be chosen by leave-one-out cross-validation, or more gen-
erally, K-fold cross-validation. However, in large-scale problems the CR method is
usually very expensive from a computational point of view. Here we also consider three
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widely used information criteria:

AIC(λ) = log(SSE) +
2

mT
dfλ

BIC(λ) = log(SSE) +
log(mT )

mT
dfλ

GCV (λ) =
SSE

mn− dfλ
(3.4)

where SSE stands for the sum of square errors, and dfλ is the effective number of
parameters. The optimal value of λ is chosen to be the one that minimizes the criterion.

Zou et al. (2007) showed that the number of nonzero coefficients is an unbiased esti-
mate for the degrees of freedom of the lasso problem. The biconvex objective function
we consider here admits a conditional lasso structure, as shown in previous section.
Therefore, we propose the following estimator for dfλ. Let (d̂(λ), û(λ), v̂(λ)) denote the
fitted value of (d,u,v), then

d̂fλ =
m∑
i=1

I(û
(λ)
i ̸= 0) +

n∑
j=1

I(v̂
(λ)
j ̸= 0)

where I(·) is the indicator function. We examine the performance of the proposed
criteria via simulation in Section 4.

2.3 Orthogonal Design

To understand further the statistical properties of the proposed method, we consider
the special case of orthogonal design. In fact there are many practical applications
for this setting. Especially, when data matrix G is an identity matrix, the regression
model reduces to a biclustering problem (Busygin et al., 2008; Lee et al., 2010), which
seeks simultaneous clustering of the rows and columns of a data matrix S. It is of great
interest to be able to obtain a sparse decomposition of the matrix so that interpretable
row-column associations can be identified. Without loss of generality, in the following
we consider GGT = I, i.e. G is orthonormal.

The following lemma gives a necessary condition for the minimizer of expression
(2.1) in orthogonal design situation.

Lemma 2. Suppose GGT = I. Then the solution (d̂, û, v̂) of model (2.1) satisfies

d̂û = sign(ũ∗)(|ũ∗| − λ(v̂)w1)
+

d̂v̂ = sign(ṽ∗)(|ṽ∗| − λ(û)w2)
+
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where

ũ∗ = SGT v̂ = (v̂TGs(1), ..., v̂
TGs(m))

T ;

ṽ∗ = GST û = (ûTSg(1), ..., û
TSg(n))

T ;

λ(û) = λwd

m∑
i=1

w1,i|ûi|;

λ(v̂) = λwd

n∑
j=1

w2,j|v̂j|.

Lemma 2 shows that when either u or v is fixed, the other one along with the
singular value d can be estimated via a simple soft-threshholding rule. The lemma
leads to a more efficient computation algorithm based on coordinate descend method,
which can be quite demanding for high dimensional problems.

3 Extension to Higher Ranks

As stated previously, we assume the rank of C has been correctly identified to be r. We
present here several different ways to extend the unit-rank methodology to the higher
rank cases.

In order to obtain sparse estimates of multiple layers, one naive approach is to
minimize the unit-rank criterion (2.1) repeatedly, each time using as the S matrix the
residuals obtained by subtracting from the data matrix the previous layers found. The
algorithm is as follows,

Sequential-extraction Algorithm

1. Let S1 = S.

2. For k ∈ 1, ..., r:

(1) Find (ûk, d̂k, v̂k) by performing the sparse unit-rank regression of Sk on G.
The optimal λk is the minimizer of some criterion defined in (3.4), e.g. BIC(λk).

(2) Let Sk+1 = Sk − d̂kûkv̂
T
k

3. The final estimate of C is given by Ĉ =
∑r

k=1 d̂kûkv̂
T
k .

This sequential fitting idea has been used in many penalized matrix decomposition
methods (Witten et al., 2009; Lee et al., 2010) and it generally works well. Without
the penalty constraints, it can be shown that the sequential-extraction algorithm leads
to the rank-r reduced-rank regression of S on G. In particular, the successive solutions
are orthogonal. With the penalty presents, the orthogonality property does not hold
any more. We find by simulation that when the singular values are close to each other,
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the algorithm may fail to distinguish between different layers. As a consequence, it may
produce incorrect associations between the responses and the covariates.

Now suppose some
√
T -consistent estimate of C, say, C̃ is available, whose SVD is

given by
∑r

k=1 d̃kũkṽ
T
k . Note that this implies ũks, d̃ks and ṽks are all

√
T -consistent

for uks, dks and vks, respectively by Lemma 3. Usually the initial estimate can be
easily obtained by the classical reduced-rank regression. For high dimensional data, to
avid the SVD of a m × m matrix, one can obtain the reduced-rank estimate of C by
performing the above sequential-extraction algorithm without the penalty term. We
then propose to obtain the sparse estimates of C by the following exclusive-extraction
algorithm:

Exclusive-extraction Algorithm

1. For k ∈ 1, ..., r:

(1) Let Sk = S−C̃−kG with C̃−k = C̃−C̃k. Let Wk = |C̃k|−γ = |ũkd̃kṽ
T
k |−γ,

where ũkd̃kṽ
T
k is the SVD of the layer-k estimate C̃k.

(2) Find (ûk, d̂k, v̂k) by performing the sparse unit-rank regression of Sk on G.
The optimal λk is the minimizer of some criterion defined in (3.4), e.g. BIC(λk).

2. The final estimate of C is given by Ĉ =
∑r

k=1 d̂kûkv̂
T
k .

The above method seeks the sparse estimator of Ĉ by separately solving r sparse
unit-rank regression problems. The computation cost increases linearly as the rank r
increases, and the estimation for different layers can be performed in parallel. The sim-
ulation results confirm that this algorithm works better than the sequential-extraction
method in general. We have also proved that the estimator obtained by exclusive-
extraction method enjoys many good large sample properties. In practice, the quality
of the estimation may partly depend on the initial estimator of C which is used to
form the exclusive layers. Especially, when the dimension is high relative to the sample
size and the true model is very sparse, the classical reduced-rank regression estimate C̃
might not be a good choice for forming the exclusive layers.

Note that we have shown that the estimates obtained by the exclusive-extraction
method satisfy the

√
T -consistency condition. To further improve the estimation, we

propose the following iterative exclusive-extraction algorithm:

Iterative Exclusive-extraction Algorithm

1. Use the initial estimate C̃ to form the exclusive layers, and use the exclusive-

extraction algorithm to get the sparse estimate Ĉ
(1)
.

2. Use the estimate Ĉ
(i)

to form the exclusive layers, and use the exclusive-extraction

algorithm to get the sparse estimate Ĉ
(i+1)

.
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3. Repeat step 2 for some times, or until Ĉ
(i)

converges according to some stopping
criteria.

Interestingly, the above iterative algorithm can be regarded as a way to solve the
general optimization problem (1.4). It has a block coordinate decent structure, with
each SVD layer as one block. The selection of the regularization parameters is nested
within the iterative algorithm, which prevents using the computationally more expen-
sive simultaneous selection of r parameters. Our experience from simulation studies
and real applications suggests that the iterative algorithm typically converges within
only a few iterations.

4 Simulation and Real Applications

4.1 Simulation 1: Unit-rank Biclustering

In this simulation, we consider a unit-rank biclustering problem. Let G be a 50 × 50
identity matrix, and let S∗ = duvT be a 100× 50 unit-rank matrix with d = 50 and

ǔ = [10, 9, 8, 7, 6, 5, 4, 3, rep(2, 17), rep(0, 75)]T , u = ǔ/||ǔ||2;
v̌ = [10,−10, 8,−8, 5,−5, rep(3, 5), rep(−3, 5), rep(0, 34)]T , v = v̌/||v̌||2

where rep(a, b) denotes a vector of length b, whose entries are all a. A data matrix S
is generated as the sum of S∗ and the noise matrix E, whose elements are randomly
sampled from the standard normal distribution, which makes the signal to noise ratio
(SNR) approximately equals to 0.5. The nonzero entries of S∗ take on several distinct
values, some of which are quite small. This makes the model estimation very chal-
lenging. We use rank-1 approximation of S based on SVD and γ = 2 in deciding the
adaptive weights w1 and w2, and the optimal solution along the path is chosen based
on BIC.

Avg. # of Avg. # of correctly Avg. # of correctly Misclassification
zeros (true) identified zeros identified nonzeros rate

SRRR u 73.89(75) 73.65(98.20%) 24.76(99.04%) 1.06%
v 33.90(34) 33.90(99.70%) 16.00(100.0%) 0.07%

SSVD u 74.33(75) 74.03(98.70%) 24.70(98.78%) 0.85%
v 33.79(34) 33.79(99.39%) 16.00(100.0%) 0.14%

Table 1: Simulation 1: Comparison of the performance between SRRR and SSVD.

Lee et al. (2010) used this example to compare their sparse singular value decom-
position (SSVD) method with several other popular biclustering methods. The SSVD
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method used the penalty (1.6) with G being an identity matrix. Therefore it can be
regarded as a special case of our method. The regularization parameter selection was
nested within the coordinate decent iterations. However, Lee et al. (2010) did not study
the theoretical properties of their estimator. Nevertheless, Lee et al. (2010) found that
the SSVD method performed much better than the other methods in terms of hav-
ing lower misclassification rate. Therefore here we only compare our method with the
SSVD method. The simulation is repeated 1000 times. Table 1 reports the simulation
results of our method and of the SSVD method for comparison. As one can see, the
misclassification rates given by our method are also extremely low, which are compa-
rable with the SSVD method. Note that our method uses the grid search strategy to
select the regularization parameter, which is more standard and of course is of higher
computational cost. However, since only one regularization parameter is used and we
have taken advantage of the continuity property of the solution path, the computation
of our method is extremely fast. The whole simulation only takes a few seconds.

4.2 Simulation 2: Mimic the ecological application

In this example, we try to mimic the ecological application discussed in the next section.
Let G be a 45 × 27 matrix, whose columns are independently generated from AR(1)
process, for which the auto-regressive parameter is 0.4 and the error standard deviation
is 1. Let C = duvT be a 18× 45 unit-rank matrix with d = 1 and

ǔ = [rep(1, 9), rep(0, 9)]T , u = ǔ/||ǔ||2;
v̌ = [v1, ..., v45]

T , with vj = (j − 1)4(j − 45)2, v = v̌/||v̌||2.

The v vector forms a polynomial curve which peaks at the thirtieth position, see Figure
1. The underlying assumption here is that the true spawning curve is smooth over the
45-day period and the spawning activity reaches its highest level at the thirtieth day. A
data matrix S is generated as the sum of CG and the noise matrix E, whose elements
are randomly sampled from the normal distribution with mean 0 and standard deviation
σ. In each replication, σ is chosen so that the SNR is of a certain level. We use the same
fitting procedure as in the actual ecological application. The simulation is repeated 100
times.

Three different regularization parameter selection methods are used, namely, the
BIC, the AIC, and the GCV. In Table 2, we report the false discovery rate (FDR)
and the false negative rate (FNR) based on û. It can be seen that our method works
reasonably well in term of the fjord selection. Both FDRs and FNRs decreases as the
signal to noise ratio increases. The BIC yields the smallest FDRs among the three
criterion. However, the FNRs of the BIC is generally higher than the FNRs of the AIC
or the GCV, especially when the signal to noise ratio is low.

Due to the fusion-type penalty imposed on the right singular vector in our model,
the estimated spawning curve v̂ can successfully capture the general form of the true
curve, i.e. the estimated curve is piecewise linear, equals zero at both ends and peaks at
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(b) SNR=1

Figure 1: Simulation 2: Estimated spawning curves (black) and the true spawning
curve (red). Left: SNR=0.5; Right: SNR=1.

a position right at or near the true peak, see Figure 1. Also reported in Table 2 are the
averaged percentile of v̂30 (APV), and the averaged distance from the estimated peak
to the true peak (ADV). Both the APV and the ADV measure whether the selected
peak is close to the position of the true peak. It can be seen from the results that the
estimated peak is very close to the true peak most of the time. Even when the signal
to noise ratio is very low, the estimated peak is not far off.

4.3 Simulation 3: Higher Rank Example

In this simulation, we let G be a 30 × 50 matrix whose entries are independently
generated from the standard normal distribution, and let C be a 30×100 rank-3 matrix
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Criterion Rates Signal to noise ratio (SNR)
0.0625 0.125 0.25 0.5 1 2

BIC FDR 8.49% 5.59% 7.69% 5.30% 1.68% 0.20%
FNR 80.44% 42.33% 4.00% 0.11% 0.00% 0.00%
APV 77.87% 88.47% 91.00% 94.73% 95.38% 95.84%
ADV 6.75 3.51 3.01 1.83 1.58 1.48

AIC FDR 32.90% 22.76% 14.39% 6.08% 1.86% 0.20%
FNR 25.89% 7.67% 1.89% 0.00% 0.00% 0.00%
APV 85.58% 89.76% 93.16% 94.60% 95.20% 95.64%
ADV 6.17 3.67 2.33 1.87 1.75 1.61

GCV FDR 36.82% 24.78% 15.86% 6.56% 1.86% 0.20%
FNR 18.33% 5.89% 1.44% 0.00% 0.00% 0.00%
APV 84.76% 89.47% 93.02% 94.44% 95.18% 95.47%
ADV 7.28 3.86 2.44 2.00 1.81 1.70

Table 2: Simulation 2: Simulation results for mimicking the ecological application.
FDR: false discovery rates of u; FNR: false negative rate of u; APV: averaged percentile
value of v̂30; ADV: averaged distance from the estimated peak to the true peak

whose SVD is given by
∑3

k=1 dkukv
T
k with

ǔ1 = [sample(±1, 15), rep(0, 85)]T ;

ǔ2 = [rep(0, 20), sample(±1, 15), rep(0, 65)]T ;

ǔ3 = [rep(0, 9), ǔ1,10:12,−ǔ1,13:15, sample(±1, 5),−ǔ2,21:22, ǔ2,23:24, rep(0, 76)]
T ;

v̌1 = [unif(−0.5, 0.5, 10), rep(0, 20)]T ;

v̌2 = [rep(0, 10), sample(±1, 10) ∗ unif(0.5, 1, 10), rep(0, 10)]T ;
v̌3 = [rep(0, 20), sample(±1, 10) ∗ unif(0.5, 1, 10)]T ;
uk = ǔk/||ǔk||2,vk = v̌k/||v̌k||2 for k = 1, 2, 3;

d1 = 15, d2 = 10, d3 = 5.

where sample(A, b) denotes a vector of length b, whose entries are independently sam-
pled from A with replacement, and unif(a1, a2, b) also denotes a vector of length b,
whose entries are independently sampled from a Uniform(a1, a2) distribution. A data
matrix S is generated as the sum of CG and the noise matrix E, whose elements are
randomly sampled from the normal distribution with mean 0 and standard deviation
σ. In each replication, σ is chosen so that the signal to noise ratio calculated based on
the third layer u3d3v

T
3 and the noise matrix E is of a certain level. The nonzero entries

of uks have some positional overlap with each other, and the nonzero entries of vks
take on distinct values, some of which are quite small. Moreover, the singular values
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are quite close to each other. These make the model estimation more challenging.
We consider several methods, i.e. the exclusive-extraction method, the iterative

exclusive-extraction method, and the sequential-extraction method. For the iterative
exclusive-extraction method, we only run one additional iteration. For the sequential-
extraction method, we consider two ways of obtaining the adaptive weights. One way
is to use coefficient estimates from sequentially performing unit-rank regression of the
previous residual data matrix. Another way is to use coefficient estimates from an
initial rank-3 regression. The simulation is repeated 100 times for each signal to noise
ratio. The optimal solution along the path is chosen based on BIC, and we use γ = 2
in deciding the adaptive weights.

Table 3 reports the estimation results for comparison. Overall the iterative exclusive-
extraction method works the best in terms of having the lowest FDR and well-controlled
FNR. Not surprisingly, the sequential-extraction method with sequential weights works
the worst. Its FDR is much higher than the FDRs of the other methods due to its
incapability of distinguishing the different layers sometimes, and its FDR does not
seem to decrease as the SNR increases. It is interesting to see that using the weights
constructed from and initial rank-3 regression can improve the sequential fitting a lot.

4.4 Modeling Larval Drift Effects on Cod Population Dynam-
ics

In Norway, a beach-seine monitoring program was begun in the early 1900s to col-
lect data on fall abundance of 6-month old fish in several fjords along the Norwegian
Skagerrak coast, which is still going on. Chan et al. (2003a) developed a fjord-based
ARMAX(2,2) time series model using the beach-seine data for studying the cod pop-
ulation dynamics. The model considered a series of coastal locations (or fjords, see in
Figure 2) to represent demographically (semi-) autonomous populations. It incorpo-
rated within- and between-cohort interactions, interactions with coexisting species, and
several environmental factors. Stenseth et al. (2006) applied the ARMAX(2,2) model
to evaluate the hypothesis that Atlantic cod larvae are passively transported by sea
currents from off-shore spawning areas to settle in the Norwegian Skagerrak waters.
This finding for the first time demonstrated a direct link between larval drift and gene
flow in the Skagerrak marine environment. Here our objective is to further evaluate the
hypothesis that the cod population dynamics within a certain coastal fjord may depend
on the fjord’s potential of receiving the North Sea larvae.

We analyze the same 15 fjords studied in Chan et al. (2003a), Chan et al. (2003b)
and Stenseth et al. (2006). The beach-seine stations within these 15 fjords are classified
and recombined into 9 exposed fjords and 9 inner fjords based on the evaluation about
their degree of exposure to the larval drift from external sources and their geographical
proximity. The logarithmically transformed time series of 0-group (i.e., fish that are
0-6 months old) cod abundance of each fjord (exposed or inner) are calculated following
similar weighting scheme as used in Chan et al. (2003a) and Chan et al. (2003b). We
thus first fit the fjord-based ARMAX(2,2) population dynamics model for the 9 exposed
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Methods Rates Layers Signal to noise ratio
0.03125 0.0625 0.125 0.25 0.5 1

Exclusive(1) FDR Layer 1 5.57% 3.81% 3.03% 2.37% 1.81% 0.94%
Layer 2 10.13% 3.98% 2.19% 1.67% 1.54% 1.85%
Layer 3 10.80% 11.15% 5.05% 1.90% 1.05% 1.00%
Overall 9.04% 6.66% 3.61% 2.06% 1.54% 1.34%

FNR Layer 1 7.72% 4.76% 3.52% 2.88% 1.92% 1.48%
Layer 2 3.76% 0.08% 0.00% 0.00% 0.00% 0.00%
Layer 3 74.84% 7.96% 0.88% 0.08% 0.00% 0.00%
Overall 28.77% 4.27% 1.47% 0.99% 0.64% 0.49%

Exclusive(2) FDR Layer 1 3.23% 1.91% 1.43% 0.55% 0.62% 0.16%
Layer 2 6.09% 2.29% 1.00% 0.34% 0.61% 0.45%
Layer 3 6.84% 8.96% 4.11% 1.44% 0.78% 0.55%
Overall 5.39% 4.57% 2.29% 0.81% 0.69% 0.40%

FNR Layer 1 7.48% 4.92% 3.64% 3.04% 2.04% 1.40%
Layer 2 3.36% 0.04% 0.00% 0.00% 0.00% 0.00%
Layer 3 80.20% 8.04% 0.92% 0.08% 0.00% 0.00%
Overall 30.35% 4.33% 1.52% 1.04% 0.68% 0.47%

Sequential(1) FDR Layer 1 4.22% 6.42% 6.81% 8.95% 15.52% 13.62%
Layer 2 4.79% 3.78% 5.06% 6.83% 13.19% 14.39%
Layer 3 3.43% 8.08% 4.09% 2.01% 4.16% 8.18%
Overall 4.67% 6.50% 5.91% 6.49% 12.30% 13.27%

FNR Layer 1 8.28% 5.92% 4.80% 5.72% 3.80% 3.28%
Layer 2 1.16% 0.16% 0.00% 2.00% 0.00% 0.00%
Layer 3 80.40% 8.72% 1.00% 0.04% 0.00% 0.00%
Overall 29.95% 4.93% 1.93% 2.59% 1.27% 1.09%

Sequential(2) FDR Layer 1 2.60% 1.53% 1.13% 1.50% 2.59% 1.62%
Layer 2 5.48% 1.64% 0.99% 0.54% 0.48% 1.06%
Layer 3 6.32% 8.93% 4.10% 1.34% 0.91% 1.64%
Overall 4.76% 4.22% 2.19% 1.21% 1.45% 1.54%

FNR Layer 1 7.64% 5.24% 4.16% 3.80% 3.36% 2.76%
Layer 2 3.32% 0.04% 0.00% 0.00% 0.00% 0.00%
Layer 3 82.36% 8.72% 0.88% 0.04% 0.00% 0.00%
Overall 31.11% 4.67% 1.68% 1.28% 1.12% 0.92%

Table 3: Simulation 3: Comparison of the performance between exclusive-extraction
method and sequential-extraction method. FDR: false discovery rate; FNR: false neg-
ative rate.
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fjords and 9 inner fjords, and then analyze the residuals of the model. It is expected
that part of the variation among the residuals can possibly be explained by the larvae
drift phenomenon. Here we let S denote the m × T data matrix with m = 18 and
T = 27, whose entry sit is the residual for fjord i and year t of the ARMAX(2,2) model.

Figure 2: The Norwegian Skagerrak coastal area showing the 21 fjords where beach
seine surveys have been conducted during the period from 1897 to 2008.

Cod larvae may potentially reach Skagerrak by passive current drift from the spawn-
ing ground in the North Sea. To quantify the amount of larvae drift, we first estimate
the annual spawning biomass distribution over the North Sea from the International
Bottom Trawl Survey (IBTS) data. Secondly, a oceanographic model is used to esti-
mate the probability of larvae drift from the North Sea to Skagerrak, at a certain date
and at a certain geographical grid on the spawning area. Finally, we obtain a proxy of
daily larvae drift to Skagerrak as a weighted average of the spawning biomass over the
North Sea spawning area with the drift probabilities being the weights, for the period
from February 22nd to April 7st, a 45-day period that covers the potential spawning
window, from year 1981 to 2007 for which the CPUE data are available. Here we let
G be a n × T matrix with n = 45 and T = 27, whose entry gjt is the logarithmi-
cally transformed North Sea larvae drift proxy at day j of year t, for j = 1, ..., n and
t = 1, ..., T .

To study the larvae drift effects among the 18 coastal fjords, we propose the following
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model

sit = uf

n∑
j=1

vjgjt + eit i = 1, ...,m; j = 1, ..., n, (4.1)

where uis can be regarded as the fjord effects, vjs the daily spawning effects, and eits are
assumed to be independently and identically distributed as N(0, σ2). Here without loss
of generality, we have adjusted the response variables to be centered, i.e

∑T
t=1 sit = 0,

for i = 1, ...,m, and the predictors be standardized, i.e
∑T

t=1 gjt = 0, 1
T

∑T
t=1 g

2
jt = 1,

for j = 1, ..., n. Hence we do not need an intercept in the model.
Let u = (u1, ..., um)

T , v = (v1, ..., vn)
T , and E = (eit)m×T . To make the model

identifiable, we restrict uTu = 1 and vTv = 1. Then (4.1) can be written in matrix
form as

S = duvTG+ E (4.2)

where d is a multiple, uTu = 1 and vTv = 1.
Model (4.2) can be recognized as a reduced-rank regression model with rank r = 1.

In our study of the cod population dynamics here, the spawning curve (v) should be a
smoothed function of the day index, first increases and then decreases over the 45-day
period. Moreover, the larvae drift effects among 18 fjords (u) should be sparse, since
we expect that only the exposed fjords can potentially receive larvae drift from external
sources but not inner fjords. We then propose to estimate (d,u,v) by minimizing the
following objective function:

1

2
tr[(S− duvTG)(S− duvTG)T ]

+ λd[
m∑
i=1

w1,i|ui|][w2,1|v1|+
n−1∑
j=2

w2,j|(1−B)2vj+1|+ w2,n|vn|]

where λ is the regularization parameter, B is the backshift operator and w1,is and w2,js
are possibly data driven weights.

The penalty term in the above model admits a multiplicative form in u and v.
The part about u is a lasso-type penalty, which encourages sparsity in uis. The part
about v is a fusion-type penalty, which not only encourages smoothness in vjs, but also
forces v to be small at its two ends. Another advantage of the fusion-type constraint
on v is that it can be easily transformed to the lasso constraint. Define θ1 = v1,
θj = (1− B)2vj+1 for j = 2, ..., n− 1 and θn = vn. Since the transformation from v to
θ ≡ (θ1, ..., θn)

T is one to one, there exists a unique n × n nonsingular matrix L such
that v = Lθ. Then we recognize that by re-defining G to be LTG and v to be θ, the
above model has exactly the same form as the model (2.1). Hence we use the proposed
sparse unit-rank regression method to carry out the above estimation problem. Note
that several factors make the estimation very challenge. Firstly, the sample size T is
27, which is relatively small for m = 18 and n = 45. Secondly, the SNR is expected to
be low. For regularization parameter selection, BIC tends to be too conservative when
SNR is low based on our simulation study. Thus, more liberal model selection criteria
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AIC and GCV are considered. We also use leave-one-out cross-validation (LOOCR),
which involves using a single observation from the original sample as the validation
data, and the remaining observations as the training data. This is repeated such that
each observation in the sample is used once as the validation data.
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Figure 3: Estimated spawning effects (Feb.22-Apr.7).

All four criterion yield the same spawning curve estimate v̂, see Figure 3. The
estimated curve is piecewise linear and has a triangle shape, which is induced by the
particular type of fusion penalty we have used in the model. The estimated peak is
at the 29th day, which indicates that spawning in the North Sea peaks around mid-
March, which is consistent with peer studies. The larvae drift effects are indeed sparse
among all the fjords. In this case using BIC for the selection of λ results in a model
including only one exposed fjord. Based on AIC, GCV and LOOCR, it is clear that the
larvae drift effects are mostly seen among exposed fjords but not inner fjords. Among
9 inner fjords, only the inner fjords 10 and 19 appear to have strong larvae drift effects.
Interestingly, the fjords 10 and 19 are among the only three fjords who have both inner
and exposed parts, which suggests that the ”inner” parts of these two fjords could have
indirectly received contributions from North Sea cod through within-fjord migration of
young cod. To better estimate the spawning peak, we drop the inner fjords 10 and 19,
and re-fit the fusion-lasso model with the remaining 16 fjords. BIC, AIC and LOOCV
yield the same spawning curve estimate as before, while the estimated curve based on
GCV peaks at the 27th day, which is very close to the original estimate. Again, we
find evidence that the larvae drift effects are mostly seen among exposed fjords but not
inner fjords (Table 4.4).

Chen and Chan (2010) developed a bootstrap approach based on the ARMAX(2,2)
model to test whether the cod population dynamics are common among the exposed
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fjords and the inner Fjords. They found that all the cod dynamics are similar across the
inner fjords, but the cod dynamics are different across the exposed fjords. Therefore,
the finding in the current analysis suggests that the differential influence from North
Sea cod larvae could be the cause of the dissimilarity among the cod dynamics of these
exposed fjords.

Criterion Fjord type Fjord number/Larvae drift effect (û)
AIC Exposed 1 2 5 9 10 16 17 19 20

0.00 0.38 0.00 0.28 0.47 0.07 0.00 0.46 0.00
Inner 2 3 4 7 8 10 11 13 19

0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.47
GCV Exposed 1 2 5 9 10 16 17 19 20

0.22 0.33 0.00 0.27 0.38 0.13 0.22 0.47 0.00
Inner 2 3 4 7 8 10 11 13 19

-0.04 0.00 0.00 0.06 0.00 0.34 0.00 0.00 0.47
LOOCR Exposed 1 2 5 9 10 16 17 19 20

0.12 0.36 0.00 0.28 0.43 0.11 0.10 0.47 0.00
Inner 2 3 4 7 8 10 11 13 19

0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.48

Table 4: Estimated larvae drift effects based on the 18-fjord model.

Criterion Fjord type Fjord number/Larvae drift effect (û)
AIC Exposed 1 2 5 9 10 16 17 19 20

0.00 0.51 0.00 0.34 0.67 0.00 0.00 0.43 0.00
Inner 2 3 4 7 8 11 13

0.00 0.00 0.00 0.00 0.00 0.00 0.00
GCV Exposed 1 2 5 9 10 16 17 19 20

0.20 0.44 0.00 0.35 0.51 0.14 0.18 0.58 0.00
Inner 2 3 4 7 8 11 13

0.00 0.00 0.00 0.00 0.00 0.00 0.00
LOOCR Exposed 1 2 5 9 10 16 17 19 20

0.07 0.47 0.00 0.36 0.56 0.12 0.03 0.57 0.00
Inner 2 3 4 7 8 11 13

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Estimated larvae drift effects based on the 16-fjord model.
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4.5 Biclustering: Lung Cancer Data

In this application, we illustrate by a real application the effectiveness of the proposed
sparse reduced-rank regression method for microarray biclustering problem (Busygin
et al., 2008). The goal is to identify sets of biologically relevant genes that are sig-
nificantly expressed for certain cancer types using microarray gene expression data, in
which usually thousands of genes are measured for only a few subjects. The proposed
method is well-suited for such a simultaneous selection problem. We show that our
method is very flexible in that it can be either a unsupervised or supervised learn tool.
Moreover, the method can be further extended to adjust the “unwanted” expression
heterogeneity, so that a more complete statistical biclustering framework can be built
upon.

The gene expression data consist of expression levels of m = 12625 genes, measured
from T = 56 subjects. 17 subjects are known to be normal (Normal), and 39 patients
are known to be with one of the three types of lung cancer. Among the patients, 20
of them are with pulmonary carcinoid tumors (Carcinoid), 13 of them are with colon
metastases (Colon) and 6 of them are with small cell carcinoma (SmallCell). The data
form a m × T matrix (S) whose columns represent the subjects, grouped sequentially
by the cancer type (Carcinoid, Colon, Normal and SmallCell), and the rows correspond
to the genes. More detailed description of the data can be found in Bhattacharjee
et al. (2001). A subset of the data was analyzed by Liu et al. (2008), in which they
proposed a method called SigClust for assessing statistical significance of clusters. The
data was also analyzed by Lee et al. (2010), in which the SSVD method was proposed
for biclustering.

Suppose we let the covariate matrix G be a T × T identity matrix, it can be seen
that the sparse reduced-rank regression model actually reduces to a low-rank matrix
approximation problem of the data matrix S, with the sparsity requirement on the
singular vectors. In this analysis, we use the iterative exclusive-extraction method.
The computation is very fast due to the orthogonality of the G matrix. We consider
only the first three layers (r = 3) since the first three singular values of S are much
bigger than the rest. Only 5200 genes are selected overall. Among those, 3783, 2852,
and 1187 genes are involved in the three layers, respectively. Heat maps of the three
estimated layers are plotted in Figure 4. To better visualize the gene clustering, (1)
all entries of the layers are divided by the maximum absolute value of the entries, (2)
only the 5200 selected genes and the other 1000 randomly chosen unselected genes are
plotted, (3) the genes in the figure are sorted hierarchically: firstly, the genes are sorted
based on the ascending order of the entries of û1, which automatically forms three gene
groups according to the sign of the entries in û1; secondly, within each group, we sort
the genes bases on û2, then nine gene groups are formed; finally, the sorting procedure
is repeated based on û3. The horizontal lines in each panel reveal the four cancer types
of the subjects. The vertical lines in each panel reveal the 1000 unselected genes at the
second column. It is clear that the proposed method is capable of simultaneously linking
sets of genes to sets of subjects. Interestingly, the associations between gene groups and
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Figure 4: Estimated SVD layers by unsupervised biclustering. All entries of the layers are
first divided by the maximum absolute value of the entries. Only the 5200 selected genes and
the other 1000 randomly chosen unselected genes are plotted. The genes in the figure are
sorted hierarchically: firstly, the genes are sorted based on the ascending order of the entries
of û1, which automatically forms three gene groups according to the sign of the entries in
û1; secondly, within each group, the genes are sorted bases on û2, then nine gene groups are
formed; finally, the sorting procedure is repeated based on û3. The horizontal lines in each
panel reveal the four cancer types of the subjects: Carcinoid, Colon, Normal and SmallCell,
from top to bottom. The vertical lines in each panel reveal the 1000 unselected genes at the
second column.

cancer types are clearly revealed in the estimated layers. For example, a very strong
contrast between the Carcinoid group and the Normal group can be seen from the first
layer, and another strong contrast between the Colon group and the Normal group can
be seen from the second layer. A comparison between the original expression data S
to the sparse estimate Ŝ (Figure 5) shows that our estimate Ŝ successfully captures the
basic structure of S, and the zero-out areas in Ŝ are indeed corresponding to most likely
noninformative areas of S. In this special case, our method actually shares very similar
idea with the SSVD method in Lee et al. (2010). Not surprisingly, our estimation result
is also similar to that of the SSVD method. Note that the number of genes in each layer
we selected is slightly bigger than that of the SSVD, which may due to the difference in
the form of penalty and regularization parameter selection. Further examination of the
additionally selected genes shows that those genes form very similar clustering patterns
as showed in Figure 4 and 5, although the signal is relatively weak. Therefore, we think
those genes are all relevant and informative, which suggests that the SSVD method
might have a larger false negative rate in this case.

The above method is an unsupervised learning tool, since the information of the
available subject cancer type is not used. This may become a disadvantage when the
primary interest is to identify gene-cancer type associations. In practice, expression
heterogeneity can arise from various sources other than the cancer type factor, and
these additional factors, which may be unknown or unmeasured, could cause within-
group variations. In unsupervised learning, the subjects within a certain group are
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Figure 5: The original expression matrix (left) and the sparse estimate by unsupervised
biclustering (right). All settings are the same as in Figure 4.

allowed to have differential responses to a set of genes. The consequence is that the
estimated layers can be hard to interpret with respect to the group information, due to
the failure of taking care of the within-group variations, which may in turn yield higher
FDR or FNR. Figure 6, in which the estimated subject effects of the three SVD layers
by the unsupervised biclustering are sequential shown, demonstrates such a problem
in this lung cancer example. It shows that the within-group variations can be quite
large, and sometimes may provide irrelevant or even controversial information about
gene-cancer associations. Particularly, in the third SVD layer, some of the subjects
of the Carcinoid group have positive responses, while the other in this group do not
or even respond conversely. Although such information may be valuable in that it
suggests possible sub-grouping structure in the Carcinoid group, it is irrelevant on how
to distinguish the four known cancer types.

In such situations, we believe that supervised learning may be preferable. The
proposed sparse reduced-rank regression method can be easily turned to a supervised
learn tool by incorporating cancer type information about the subjects to the covariate
matrix G. For this particular example, we could let G be a 4× 56 matrix such that

G =


1T
20 0 0 0
0 1T

13 0 0
0 0 1T

17 0
0 0 0 1T

6

 .

In this setting, the coefficient matrix C becomes a 12625 × 4 matrix, and each of its
1 × 4 right singular vectors can be regarded as representing group effects rather than
individual subject effects, while each of its left singular vectors still represents the gene
effects, with respect to a certain group or a contrasts of different groups. By doing so,
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Figure 6: Estimated subject (group) effects by unsupervised (supervised) biclustering.
Three SVD layers are shown sequentially.

Figure 7: Estimated SVD layers by supervised biclustering. All settings are the same
as in Figure 4.

the SVD is supervised such that it is forced to extract only the meaningful associations
with respect to the cancer-type factor. Thus, this method is expected to be more
robust than the unsupervised learning method. Since the G matrix is still orthogonal,
the computation stays to be very efficient. We then perform the supervised biclustering
using the iterative exclusive-extraction method. Again, we consider only three layers
since the first three singular values of C̃ are much bigger than the rest. Only 4663 genes
are selected overall. Among those, 3507, 2231, and 1089 genes are involved in the three
layers respectively. The estimated group effects of the three SVD layers are sequential
shown in 6. Heat maps of the three estimated layers are plotted in Figure 7, and a
comparison between the original expression data S to the estimate Ŝ is shown in Figure
8. By supervised biclustering, more than one thousand genes are eliminated in the
three layers, and only information about gene-cancer type associations are extracted
and kept.

In gene expression studies, expression heterogeneity due to technical, genetic, envi-
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Figure 8: The original expression matrix (left) and the estimate by supervised biclus-
tering (right). All settings are the same as in Figure 4.

ronmental, or demographic variables is very common. It is desirable to adjust for these
covaraite effects or “unwanted” variations while studying the clustering with respect to
the primary variable, e.g. cancel type. Our methodology can be further extended for
these needs. In general, we consider the reduced-rank regression model with two sets
of regressors,

st = Cgt +Dzt + et, t = 1, ..., T, (4.3)

where gt is constructed from the primary variable, zt is a p × 1 vector of additional
variables measured on the tth subject, D is a m × p coefficient matrix that may be
of full rank, and the other terms are defined as in model (1.1). This model was first
suggested in the seminal work of Anderson (1951), and was studied by Reinsel and
Velu (1998, Chapter 3) under classical least-square setting. Here under our regularized
regression framework, the above extension adds no significant difficulty in estimation.
One could still use a block coordinate decent algorithm to update C and D iteratively
until converge.
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5 Theoretical Property

We first recall or prove some useful results for the classical reduced-rank regression.

Proposition 1. (Reinsel and Velu, 1998): For the model (1.1), suppose rank(C) =
r ≤ min(m,n). Then the minimizer of the objective (1.2) is given by

C̃ = AATSGT (GGT )−1

where A = [A1, ..., Ar] and Aj is the normalized eigenvector that corresponds to the
jth largest eigenvalue of the matrix SGT (GGT )−1GST (j = 1, ..., r). Moreover,

√
Tvec(C̃−C) →d N(0,Σc)

where the expression of Σc is given in (2.36) from Reinsel and Velu (1998).

Lemma 3. For the model (1.1), suppose some estimator of C, say, C̃, satisfies√
Tvec(C̃ − C) →d N(0,Σc). Let C̃ =

∑r
k=1 d̃kũkṽ

T
k , C =

∑r
k=1 dkukv

T
k be the SVD

of C̃ and C respectively, where d1 > ... > dr > 0. Then
√
T (d̃k − dk),

√
T (ũk −uk) and√

T (ṽk−vk) for k = 1, ..., r are all asymptotically normally distributed with zero mean.

Proof: Here we only prove the asymptotical normality for ũk, and the prove for d̃k
and ṽk are similar. Recall that ũk (d̃k) and uk (dk) are the eigenvectors (eigenvalues)

of C̃C̃
T
and CCT , respectively. With the use of perturbation expansion of matrices

(Izenman, 1975), ũk can be expanded around uk to give

√
T (ũk − uk) =

√
T

r∑
i̸=k

1

d2k − d2i
uiu

T
k (C̃C̃

T −CCT )ui

+ op(
√
Tvec(C̃C̃

T −CCT ))

=
r∑

i̸=k

1

d2k − d2i
(uT

i ⊗ uiu
T
k )
√
Tvec(C̃C̃

T −CCT )

+ op(
√
Tvec(C̃C̃

T −CCT )).

By the fact that
√
Tvec(C̃−C) →d N(0,Σc) and

√
T (C̃C̃

T −CCT ) =
√
T (C̃−C)CT +

√
TC(C̃−C)T +

√
T (C̃−C)(C̃−C)T ,

We have
√
Tvec(C̃C̃

T −CCT ) = (C⊗ Im)
√
Tvec(C̃−C) + (In ⊗ C)

√
Tvec(C̃

T −CT ) + op(1).

Therefore
√
Tvec(C̃C̃

T −CCT ) is asymptotically normally distributed with zero mean.
It then follows that

√
T (ũk − uk) is also asymptotically normally distributed with zero
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mean.

Remark : In Lemma 3, for simplicity we do not give explicit expression of the asymp-
totical covariance matrix. However, it can be easily obtained by Delta method.

In the following, we first investigate the theoretical property of the proposed reg-
ularized estimators for the unit-rank case. Then we extend the theory to the general
case. We consider the following conditions:

C1. 1
T
GGT → K, where K is a positive definite matrix. Let

K =

[
K11 K11

K21 K22

]
,

where K11 is a n0 × n0 matrix.

C2. The m× 1 vector of random errors et is independently and identically distributed
(i.i.d) with mean vector E(et) = 0 and covariance matrix Cov(et) = Σe, an m×m
positive-definite matrix. Let

Σe =

[
Σ11 Σ11

Σ21 Σ22

]
,

where Σ11 is a m0 ×m0 matrix.

C3. λT√
T
→ 0, λT√

T
T

γ
2 → ∞ with γ > 0.

5.1 Unit-rank Case

Suppose the true model is given as (1.1), where C ∈ Ω =
∪m

i=1 Ωi, and

Ωi = {uvT ;u ∈ Rmwith ui = 1,v ∈ Rn andv ̸= 0}.

Here for simplicity the singular value is absorbed into the singular vectors. Each Ωi

is composed of nonzero rank-1 matrices whose ith entry of its left singular vector
is nonzero. Therefore the matrix space Ω consists of all the nonzero rank-1 matrix.
Without loss of generality, in the following we assume C ∈ Ω1 with C = u∗v∗T and
u∗
1 = 1. Let A = {i : u∗

i ̸= 0} and B = {j : v∗j ̸= 0}. Without loss of generality,
we assume A = {1, ...,m0} and B = {1, ..., n0} where m0 ≤ m and n0 ≤ n. Denote
A− x = {i; i ∈ A, i ̸= x} and AB = {(i, j); i ∈ A, j ∈ B}.

Let Q(u, v) denote the objective function as (2.1), i.e.

QT (u,v) = tr[(S− uvTG)(S− uvTG)T ] + λT

m∑
i=1

n∑
j=1

wij|uivj| (5.1)
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and let (û(T ), v̂(T )) = argminQT (u,v). Theorem 1-3 study the asymptotic properties
of (û(T ), v̂(T )) as the sample size T → ∞.

Theorem 1 . Suppose condition C1 and C2 are satisfied, and suppose λT√
T
→ λ0 ≥ 0

as T → ∞. Then there exists a local minimizer (û(T ), v̂(T )) of QT (u,v) in (5.1) such

that ∥û(T ) − u∗∥ = Op(T
− 1

2 ) and ∥v̂(T ) − v∗∥ = Op(T
− 1

2 ).

Proof: We consider a neighborhood of C in Ω1 of radius r > 0:

N (C, r) = {(u∗ +
1√
T
a,v∗ +

1√
T
b), a ∈ Rmwith a1 = 0;b ∈ Rn; ∥a∥ ≤ r; ∥b∥ ≤ r}.

In the following, we let a ∈ Rm with a1 = 0 and b ∈ Rn unless otherwise noted. For
any (u∗ + 1√

T
a,v∗ + 1√

T
b) ∈ N (C, r), we have

QT (u
∗ +

1√
T
a,v∗ +

1√
T
b)

=tr[(S− (u∗ +
1√
T
a)(v∗ +

1√
T
b)TG)(S− (u∗ +

1√
T
a)(v∗ +

1√
T
b)TG)T ]

+ λT

m∑
i=1

n∑
j=1

wij|u∗
i +

1√
T
ai||v∗j +

1√
T
bj|.

We want to show that for any given ϵ > 0, there exists a large enough constant r such
that

P{inf∥a∥=∥b∥=rQT (u
∗ +

1√
T
a,v∗ +

1√
T
b) > QT (u

∗,v∗)} ≥ 1− ϵ.

This implies that with probability at least 1 − ϵ there exists a local minimum in the
interior of the ball N (C, r). Hence, there exists a local minimizer such that ∥û−u∗∥ =
Op(T

−1/2) and ∥v̂− v∗∥ = Op(T
−1/2).

Define ΨT (a,b) ≡ QT (u
∗ + 1√

T
a,v∗ + 1√

T
b)−QT (u

∗,v∗). We have

ΨT (a,b) =− 2tr[(u∗bT + avT +
1√
T
abT )

1√
T
GET ]

+ tr[(u∗bT + avT +
1√
T
abT )

GGT

T
(u∗bT + avT +

1√
T
abT )T ]

+
λT√
T

m∑
i=1

n∑
j=1

wij

√
T [|u∗

i v
∗
j +

1√
T
u∗
i bj +

1√
T
aiv

∗
j +

1

T
aibj| − |u∗

i v
∗
j |].
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By some algebra, we have

ΨT (a,b) =− 2vecT (bu∗T + v∗aT +
1√
T
baT )vec(

1√
T
GET )

+ vecT (bu∗T + v∗aT +
1√
T
baT )(Im ⊗ GGT

T
)vec(bu∗T + v∗aT +

1√
T
baT )

+
λT√
T

m∑
i=1

n∑
j=1

wij

√
T [|u∗

i v
∗
j +

1√
T
u∗
i bj +

1√
T
aiv

∗
j +

1

T
aibj| − |u∗

i v
∗
j |]. (5.2)

We know vec( 1√
T
GET ) →d N(0,Σe ⊗K) and

√
T [|u∗

i v
∗
j+

1√
T
u∗
i bj+

1√
T
aiv

∗
j+

1

T
aibj|−|u∗

i v
∗
j |] →


sign(u∗

i v
∗
j )(u

∗
i bj + aiv

∗
j ) u∗

i v
∗
j ̸= 0

|aiv∗j | u∗
i = 0, v∗j ̸= 0

|u∗
i bj| u∗

i ̸= 0, v∗j = 0
0 u∗

i = 0, v∗j = 0

as T → ∞. Therefore when T is sufficiently large,

ΨT (a,b) ≥− 2vecT (bu∗T + v∗aT )vec(
1√
T
GET )

+ vecT (bu∗T + v∗aT )(Im ⊗ GGT

T
)vec(bu∗T + v∗aT )

+
λT√
T

m∑
i=1

n∑
j=1

wijsign(u
∗
i v

∗
j )(u

∗
i bj + aiv

∗
j ).

Now it suffices to show for a sufficiently large r, the second term on the right-hand
side dominates both the first and the third term in ∥a∥ = ∥b∥ = r. Given the facts that

vec( 1√
T
GET ) →d N(0,Σe ⊗K), Im ⊗ GGT

T
→ Im ⊗K, λT√

T
→ λ0 and wij →p |u∗

i v
∗
j |−γ

as T → ∞, it then suffices to show that for a sufficiently large r, denoted as r∗T ,
∥vec(bu∗T +v∗aT )∥2 dominates ∥vec(bu∗T +v∗aT )∥. Since a1 = 0 and u∗

1 = 1, the first
column of bu∗T + v∗aT is b. It then follows that

∥vec(bu∗T + v∗aT )∥2 = r2(1 + f(
a

r
,
b

r
)),

where f(·, ·) is a bounded and continuous function on the unit-sphere

{(a,b); a ∈ Rmwith a1 = 0 and ∥a∥ = 1,b ∈ Rnwith ∥b∥ = 1}.

This guarantees the existence of r∗T and hence completes the proof of the theorem.

Remark : By the law of iterated logarithm, 1√
T
GET ≤ K

√
log log T a.s. for some

K > 0. It then follows that the radius r∗T of the neighborhood N (C, r∗T ), in which
the local minimum is guaranteed to exist, is of the order O(

√
log log T ). Therefore as
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T → ∞, the neighborhood N (C, r∗T ) expends to the whole parameter space Ω1.

Theorem 2 . Suppose condition C1-C3 are satisfied. Let (û(T ), v̂(T )) be the local

minimizer of QT (u,v) in (5.1) as found in Theorem 1. Then
√
T (û

(T )
A−1 − u∗

A−1) and√
T (v̂

(T )
B − v∗

B) are both asymptotically normally distributed.

Proof: Again, we consider ΨT (a,b) in (5.2). We know that vec( 1√
T
GET ) →d N(0,Σe⊗

K) and Im ⊗ GGT

T
→ Im ⊗K. Now consider the third term:

• If u∗
i v

∗
j ̸= 0:

wij →p |u∗
i v

∗
j |−γ;

√
T [|u∗

i v
∗
j +

1√
T
u∗
i bj +

1√
T
aiv

∗
j +

1

T
aibj| − |u∗

i v
∗
j |] → sign(u∗

i v
∗
j )(u

∗
i bj + aiv

∗
j );

λT√
T

→ 0;

⇒ λT√
T
wij

√
T [|u∗

i v
∗
j +

1√
T
u∗
i bj +

1√
T
aiv

∗
j +

1

T
aibj| − |u∗

i v
∗
j |] →p 0.

• If u∗
i = 0,v∗j ̸= 0:

λT√
T
wij =

λT√
T
T

γ
2 |
√
T c̃ij|−γ →p ∞;

√
T [|u∗

i v
∗
j +

1√
T
u∗
i bj +

1√
T
aiv

∗
j +

1

T
aibj| − |u∗

i v
∗
j |] → |aiv∗j |;

⇒ λT√
T
wij

√
T [|u∗

i v
∗
j +

1√
T
u∗
i bj +

1√
T
aiv

∗
j +

1

T
aibj| − |u∗

i v
∗
j |] →p ∞ if ai ̸= 0.

• If u∗
i ̸= 0,v∗j = 0: by similar argument,

λT√
T
wij

√
T [|u∗

i v
∗
j +

1√
T
u∗
i bj +

1√
T
aiv

∗
j +

1

T
aibj| − |u∗

i v
∗
j |] →p ∞ if bi ̸= 0.

Therefore,

ΨT (a,b) →d Ψ(a,b) =

{
−2zTwAB + zT (Im0 ⊗K11)z ai = 0, i /∈ A; bj = 0, j /∈ B;
∞ otherwise.

where z = vec(bBu
∗T
A + v∗

Ba
T
A) and wAB ∼ N(0,Σ11 ⊗K11).

Next we show that Ψ(a,b) has a unique minimum which is denoted as (â, b̂). Ob-
viously, ∀i /∈ A, âi = 0, and ∀j /∈ B, b̂j = 0. Now consider ΨAB(aA,bB) ≡ −2zTwAB +
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zT (Im0 ⊗K11)z. We know vec(bBu
∗T
A ) = (u∗

A⊗ In0)bB, and vec(v∗
Ba

T
A) = (Im0 ⊗v∗

B)aA,
then

ΨAB(aA,bB) =− 2bT
B(u

∗T
A ⊗ In0)wAB + (u∗T

A u∗
A)b

T
BK11bB

+ 2bT
B(u

∗T
A ⊗K11v

∗
B)aA

− 2aT
A(Im0 ⊗ v∗T

B )wAB + (v∗T
B K11v

∗
B)a

T
AaA.

To find the unique minimum, we first assume aA is known. Then

ΨAB(aA,bB|aA) =− 2bT
B [(u

∗T
A ⊗ In0)wAB − (u∗T

A ⊗K11v
∗
B)aA]

+ (u∗T
A u∗

A)b
T
BK11bB + const,

which is a convex function of bB because K11 is positive definite. The unique minimizer
is given by

b̂B =
1

u∗T
A u∗

A
K−1

11 [(u
∗T
A ⊗ In0)wAB − (u∗T

A ⊗K11v
∗
B)aA]

We plug in this expression to the original objective function ΨAB(aA,bB), then

ΨAB(aA,bB|bB = b̂B)

=− 2aT
A(Im0 ⊗ v∗T

B )wAB + (v∗T
B K11v

∗
B)a

T
AaA

− 1

u∗T
A u∗

A
[wT

AB(u
∗
A ⊗ In0)− aT

A(u
∗
A ⊗ v∗T

B KT
11)]K

−1
11 [(u

∗T
A ⊗ In0)wAB − (u∗T

A ⊗K11v
∗
B)aA]

=− 2aT
A[Im0 ⊗ v∗T

B − 1

u∗T
A u∗

A
(u∗

A ⊗ v∗T
B KT

11)K
−1
11 (u

∗T
A ⊗ In0)]wAB

+ aT
A[(v

∗T
B K11v

∗
B)Im0 −

1

u∗T
A u∗

A
(u∗

A ⊗ v∗T
B KT

11)K
−1
11 (u

∗T
A ⊗K11v

∗
B)]aA + const

=− 2aT
A[(Im0 −

1

u∗T
A u∗

A
u∗
Au

∗T
A )⊗ v∗T

B ]wAB

+ (v∗T
B K11v

∗
B)a

T
A(Im0 −

1

u∗T
A u∗

A
u∗
Au

∗T
A )aA + const

Recall a1 = 0 and u∗
1 = 1, then

ΨAB(aA,bB|bB = b̂B) =− 2aT
A−1[(Im0−1 −

1

u∗T
A u∗

A
u∗
A−1u

∗T
A−1)⊗ v∗T

B ]w(A−1)B

+ (v∗T
B K11v

∗
B)a

T
A−1(Im0−1 −

1

u∗T
A u∗

A
u∗
A−1u

∗T
A−1)aA−1 + const

which is a convex function of aA−1 because (Im0−1− 1
u∗T
A u∗

A
u∗
A−1u

∗T
A−1) is positive definite.

The unique minimizer is given by

âA−1 =
1

v∗T
B K11v∗

B
(Im0−1 ⊗ v∗T

B )w(A−1)B.
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Then it follows that

b̂B =
1

u∗T
A u∗

A
[u∗T

A ⊗K−1
11 − 1

v∗T
B K11v∗

B
(u∗T

A J⊗ v∗
Bv

∗T
B )]wAB

where

J =

[
0 0
0 Im0−1

]
.

Finally, we show the asymptomatic normality results. Let â(T ) =
√
T (û(T ) − u∗)

and b̂
(T )

=
√
T (v̂(T ) − v∗). Let H = {(a, b); a ∈ Rmwith a1 = 0, b ∈ Rn} and

HT = {(a, b); a ∈ Rmwith a1 = 0, b ∈ Rn, ∥a∥ ≤ r∗T , ∥b∥ ≤ r∗T}.

where the radius r∗T is defined as in the proof of Theorem 2. We have

• ΨT →d Ψ for any compact set of H;

• The limit process Ψ has continuous sample path and unique point of minima
(â, b̂);

• HT → H as T → ∞ since r∗T = O(
√
log log T ), and ΨT (â

(T ), b̂
(T )

) ≤ ΨT (HT ) +
op(1);

• The sequence (â(T ), b̂
(T )

) is uniformly tight.

Therefore, by the argmax theorem (van der Vaart, 2000), we have (â(T ), b̂
(T )

) →d (â, b̂),
i.e.

√
T (û

(T )
A−1 − u∗

A−1) →d
1

v∗T
B K11v∗

B
(Im0−1 ⊗ v∗T

B )w(A−1)B;

√
T (v̂

(T )
B − v∗

B) →d
1

u∗T
A u∗

A
[u∗T

A ⊗K−1
11 − 1

v∗T
B K11v∗

B
(u∗T

A J⊗ v∗
Bv

∗T
B )]wAB;

√
T (û

(T )
Ac − u∗

Ac) →d 0;√
T (v̂

(T )
Bc − v∗

Bc) →d 0.

The proof is completed.

Theorem 3 . Suppose condition C1-C3 are satisfied. Let (û(T ), v̂(T )) be the local

minimizer of QT (u,v) in (5.1) as found in Theorem 1. Let AT = {i : û(T )
i ̸= 0} and

BT = {j : v̂(T )
j ̸= 0}. Then P (AT = A) → 1 and P (BT = B) → 1 as T → ∞.

Proof: According to the asymptotic normality result, û
(T )
A →p u

∗
A and v̂

(T )
B →p v

∗
B; thus

∀i ∈ A, P (i ∈ AT ) → 1, and ∀j ∈ B, P (j ∈ BT ) → 1. Then it suffices to show that
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∀i /∈ A, P (i ∈ AT ) → 0, and ∀j /∈ B, P (j ∈ BT ) → 0. In the following, for simplicity
we write û(T ) = û and v̂(T ) = v̂.

∀i /∈ A, consider the event i ∈ AT . By the KKT optimality conditions, we know
that

1√
T
XT

(v),i(y−X(v)û) =
1√
T
λ(v)w1,i (5.4)

where X(v) = (X(v),1, ...X(v),m) = Im ⊗ GT v̂, λ(v) = λT

∑n
j=1 w2,j|v̂j|. Consider the

left-hand side:

LHS =
1√
T
XT

(v),i(y−X(v)û)

=
1√
T
[v̂TGGTv∗u∗

i − v̂TGGT v̂ûi + v̂TGe(i)]

=− v̂TGGT v̂

T

√
T ûi +

v̂TGe(i)√
T

=Op(1).

Consider the right-hand side:

RHS =
1√
T
λ(v)w1,i

=
λT√
T
|v̂|Tw2w1,i

=
λT√
T
T

γ
2 |v̂|Tw2

1

|
√
T ũi|γ

→p∞.

Therefore,

P (i ∈ AT ) ≤ P (
1√
T
XT

(v),i(y−X(v)û) =
1√
T
λ(v)w1,i) → 0.

∀j /∈ B, consider the event j ∈ BT . By the KKT optimality conditions, we know
that

1√
T
XT

(u),j(y−X(u)v̂) =
1√
T
λ(u)w2,j (5.5)

where X(u) = (X(u),1, ...X(u),n) = û ⊗ GT , λ(u) = λT

∑m
i=1 w1,i|ûi|. Consider the left-
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hand side:

LHS =
1√
T
XT

(u),j(y−X(u)v̂)

=
1√
T
[ûTu∗v∗TGg(i) − ûT ûv̂TGg(i) + ûTEg(i)]

=
√
T ûTu∗v∗T Gg(i)

T
−

√
T ûT ûv̂T

Gg(i)

T
+

ûTEg(i)√
T

=
√
T (û− u∗)Tu∗v∗T Gg(i)

T
− ûT û

√
T (v̂T − v∗T )

Gg(i)

T

−
√
T (ûT û− u∗Tu∗)v∗T Gg(i)

T
+

ûTEg(i)√
T

=Op(1).

Consider the right-hand side:

RHS =
1√
T
λ(u)w2,j

=
λT√
T
|û|Tw1w2,j

=
λT√
T
T

γ
2 |û|Tw1

1

|
√
T ṽj|γ

→p∞.

Therefore,

P (j ∈ BT ) ≤ P (
1√
T
XT

(u),j(y−X(u)v̂) =
1√
T
λ(u)w2,j) → 0.

The proof of the theorem is completed.

5.2 General Case

Suppose the true model is given as (1.1), whereC is a rank-r matrix (r > 1). We assume
the rank of C has been correctly identified, and we also assume some

√
T -consistent

estimate of C, say, C̃ is available, and
√
Tvec(C̃ − C) →d N(0,Σc). According to

the exclusive-extraction method, we estimate each unit-rank layer Ck (k = 1, ..., r) by
minimizing the following objective function Q(u,v):

Q(u,v) =
1

2
tr{[Sk − uvTG][Sk − uvTG]T}+ λT

m∑
i=1

n∑
j=1

wij|uivj| (5.3)

where Sk = S − C̃−kG with C̃−k = C̃ − C̃k. Similarly as before, the singular value
is absorbed into the singular vectors, and we assume Ck ∈ Ω1 with Ck = u∗v∗T and
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u∗
1 = 1. All the other settings are the same as before.

Theorem 4 . Suppose condition C1 and C2 are satisfied, and suppose λT√
T
→ λ0 ≥ 0

as T → ∞. Then there exists a local minimizer (û(T ), v̂(T )) of QT (u,v) in (5.3) such

that ∥û(T ) − u∗∥ = Op(T
− 1

2 ) and ∥v̂(T ) − v∗∥ = Op(T
− 1

2 ).

Proof: We follow the proof of Theorem 1. The only difference is the expression of
ΨT (a,b). We shall replace the term vec( 1√

T
GET ) by vec[ 1√

T
G(S−C̃−kG−u∗v∗TG)T ].

By some algebra, we have

vec[
1√
T
G(S− C̃−kG− u∗v∗TG)T ]

= (Im ⊗ GGT

T
)
√
T [vec(C−k)− vec(C̃−k)] + vec(

1√
T
GET )

By C1, C2 and Lemma 3, the above expression is Op(1). The rest of the proof is
exactly the same as the proof of Theorem 1.

Theorem 5 . Suppose condition C1-C3 are satisfied. Let (û(T ), v̂(T )) be the local

minimizer of QT (u,v) in (5.3) as found in Theorem 1. Then
√
T (û

(T )
A−1 − u∗

A−1) and√
T (v̂

(T )
B − v∗

B) are both asymptotically normally distributed.

Proof: We follow the proof of Theorem 2. Again, the difference is the expression of
ΨT (a,b). We shall replace the term vec( 1√

T
GET ) by

(Im ⊗ GGT

T
)
√
T [vec(C−k)− vec(C̃−k)] + vec(

1√
T
GET ).

By C1, C2 and Lemma 3, it can be seen that this expression is asymptotically normally
distributed. We shall then modify the distribution of wAB accordingly. The rest of the
proof is exactly the same as the proof of Theorem 2.

Theorem 6 . Suppose condition C1-C3 are satisfied. Let (û(T ), v̂(T )) be the local

minimizer of QT (u,v) in (5.3) as found in Theorem 1. Let AT = {i : û(T )
i ̸= 0} and

BT = {j : v̂(T )
j ̸= 0}. Then P (AT = A) → 1 and P (BT = B) → 1 as T → ∞.

Proof: We follow the proof of Theorem 3. In this setting, the left-hand side of 5.4
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becomes:

LHS =
1√
T
XT

(v),i(y−X(v)û)

=
1√
T
[v̂TGGTv∗u∗

i + v̂TGGT (
r∑

j ̸=k

v∗
ju

∗
i −

r∑
j ̸=k

ṽjũi)− v̂TGGT v̂ûi + v̂TGe(i)]

=v̂T GGT

T

√
T (

r∑
j ̸=k

v∗
ju

∗
i −

r∑
j ̸=k

ṽjũi)−
v̂TGGT v̂

T

√
T ûi +

v̂TGe(i)√
T

=Op(1)

Note that this is true by the fact that
√
T (

∑r
j ̸=k v

∗
ju

∗
i −

∑r
j ̸=k ṽjũi) = Op(1) by Lemma

3. The left-hand side of 5.5 becomes:

LHS =
1√
T
XT

(u),j(y−X(u)v̂)

=
1√
T
[ûT (C∗

−k − C̃−k)Gg(i) + ûTu∗v∗TGg(i) − ûT ûv̂TGg(i) + ûTEg(i)]

=ûT
√
T (C∗

−k − C̃−k)
Gg(i)

T

+
√
T (û− u∗)Tu∗v∗T Gg(i)

T
− ûT û

√
T (v̂T − v∗T )

Gg(i)

T

−
√
T (ûT û− u∗Tu∗)v∗T Gg(i)

T
+

ûTEg(i)√
T

=Op(1).

Note that this is true by the fact that
√
T (C∗

−k − C̃−k) = Op(1) by Lemma 3. The rest
of the proof is exactly the same as the proof of Theorem 3.
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6 Discussion

• form of the penalty.

• biconvexity.

• orthogonality.
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