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Summary. For a reduced rank multivariate stochastic regression model of rank r*, the regres-
sion coefficient matrix can be expressed as a sum of r* unit rank matrices each of which is
proportional to the outer product of the left and right singular vectors. For improving predictive
accuracy and facilitating interpretation, it is often desirable that these left and right singular
vectors be sparse or enjoy some smoothness property. We propose a regularized reduced rank
regression approach for solving this problem. Computation algorithms and regularization param-
eter selection methods are developed, and the properties of the new method are explored both
theoretically and by simulation. In particular, the regularization method proposed is shown to be
selection consistent and asymptotically normal and to enjoy the oracle property. We apply the
proposed model to perform biclustering analysis with microarray gene expression data.
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1. Introduction

The reduced rank regression model (Izenman, 1975; Reinsel and Velu, 1998) achieves dimension
reduction through restricting the rank of the coefficient matrix. Recently, as high dimensional
data become increasingly common, another approach of dimension reduction, through utiliz-
ing sparsity-inducing regularization techniques under a multivariate regression framework, has
emerged (Turlach et al., 2005; Obozinski et al., 2008; Peng et al., 2010). These two approaches,
namely the reduced rank method and regularization technique, both provide very important
extensions to classical multivariate regression. Therefore, it is appealing to integrate the two
approaches. One novel attempt was made by Yuan er al (2007), in which a regularized least
squares approach was proposed to conduct dimension reduction and coefficient estimation
simultaneously. The penalty that they considered encourages sparsity in the singular values of
the coefficient matrix so that the rank can be automatically reduced and determined as the
number of non-zero singular values. However, their model did not take into account possible
sparsity structure in the coefficient matrix itself, so it does not do variable selection. Here, we
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propose a novel regularized reduced rank regression approach, which concerns the estimation
of the sparsity structure in the singular vectors of a reduced rank coefficient matrix. A key
advantage of our method is its ability to eliminate both irrelevant responses and predictors and
yet to keep the reduced rank structure.

Given n observations of the response y; € 7 and predictor x; € %”, we consider the reduced
rank regression model

Y=XC+E (1.1)

where Y=(y1,...,y2) T, X=(x1,....x,)T, Cis a p x g coefficient matrix with rank(C) = r* <
min(p,q) and E=(ey,...,e,)T is a random n x ¢ matrix; the error vectors are assumed to
be independently and identically distributed (IID) with mean vector E(e;) =0 and covariance
matrix cov(e;) =X, a ¢ X ¢ positive definite matrix. We assume that the variables are centred so
that there is no intercept term. For any 1 <r <min(p, g), the rank r least squares estimator of C
which minimizes | Y — XC ||% subject to rank(C) =r can be obtained explicitly (Reinsel and Velu,
1998), where ||-||r denotes the Frobenius norm. The rank of C can also be estimated by various
methods; see, for example Anderson (2002, 2003), Camba-Mendez ef al. (2003) and Yuan et al.
(2007). Henceforth, the rank of C is assumed to have been correctly identified to be r*.

The rank r* coefficient matrix C can be expressed through singular value decomposition
(SVD) as a sum of r* unit rank matrices, each of which is proportional to the outer product of
the left and right singular vectors, i.e.

r* r*
C=UDV'=Y duuv) =3 G4, (1.2)
k=1 k=1
where U= (uy,...,u,+) consists of r* orthonormal left singular vectors, V= (v{,...,V,+) con-

sists of r* orthonormal right singular vectors, D is an r* x r* diagonal matrix with positive
singular values d; >...>d,+ on its diagonal and C; = dkukvz is the layer k& unit rank matrix of
C. Here all the singular values are assumed to be distinct so that this SVD decomposition is
unique up to the signs of the singular vectors. If some singular values are identical, then the
preceding SVD decomposition is non-unique, which complicates the theoretical analysis of the
model estimation. In practice, the singular values rarely coincide, so the distinct singular value
condition generally holds.

This SVD representation of C reveals a very appealing latent model interpretation of the
reduced rank regression, i.e. C is composed of r* orthogonal layers of decreasing importance,
and each layer provides a distinct channel or pathway relating the responses to the predictors.
In this sense, for each layer &, the elements in u; can be viewed as the predictor effects, the
elements in v; can be viewed as the response effects and the singular value d; indicates the
relative importance of the association. Under this reduced rank structure, a more practical situ-
ation is that each channel or pathway of association between the responses and predictors may
involve only a subset of the responses and predictors. Therefore, to achieve further dimension
reduction and to facilitate interpretation, it is desirable that the left and right singular vectors
be sparse.

For example, in a microarray biclustering problem (Busygin et al., 2008; Lee et al., 2010),
the data Y consist of expression levels of thousands of genes, measured from a few subjects,
who are either normal subjects or patients with different types of lung cancer. The goal is to
identify sets of biologically relevant genes that are expressed at different levels in different types
of cancer. A biclustering analysis can be performed by seeking a sparse SVD approximation of
the matrix Y, which corresponds to model (1.1) with X being an identity matrix. Our method
may be heuristically justified as follows:
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Reduced Rank Stochastic Regression 205

(a) the fact that the subjects form a few cancer groups indicates that the cancer—gene associ-
ations admit a reduced rank structure and

(b) that each cancer—gene association generally involves certain subsets of genes and subjects
implies a low rank model with sparse components.

Model (1.1) with a non-identity design matrix may, however, be used to facilitate supervised
learning. For instance, if the types of cancer of the subjects are known, supervised gene cluster-
ing may be performed by fitting model (1.1) with X incorporating the cancer type information;
see Section 4.4 for details. Another example is an ecological application, in which we analyse
a data set quantifying the abundance of Norwegian Skagerrak coastal cod, for simultaneously
capturing the North Sea cod spawning window and identifying the set of coastal fjords that
are influenced by the larval drift from the North Sea (Stenseth ez al., 2006). The fact that there
are only a few cod spawning populations in the North Sea suggests that a reduced rank model
is appropriate. It is hypothesized that, among the 18 coastal fjords under consideration, only
those exposed to the Skagerrak could potentially receive larval drift from the North Sea; hence
the right singular vector of the coefficient matrix, which comprises the fjord-specific larval drift
effects, is expected to be sparse. However, it is believed that the spawning window lasts for only 2
weeks somewhere during a 45-day period under study, so the left singular vector which consists
of the daily spawning effects is believed to be smooth in time and hump shaped. Therefore,
to address these problems under the multivariate regression framework, the main challenge is
how to recover certain sparsity or smoothness structure in a reduced rank regression; details
of this ecological application will be published elsewhere. Similar data structures also arise in
many other problems in various fields including genomewide association studies (Vounou et al.,
2010).

To recover an SVD structure that is both sparse and orthogonal is certainly not an easy
task. However, strict orthogonality is often not necessary in real applications (Lee et al., 2010).
We thus consider a local search strategy which relaxes the orthogonality condition between the
estimated left or right singular vectors to accommodate efficient search for their sparsity
patterns. We propose to estimate C by minimizing the following objective function with respect
to the triplets (dg,u, vi) fork=1,...,r*:

r

£ r*

JIY =X 3 diwmevi I1F+ 3 Pef e, (de, we vio ), (1.3)
k=1 k=1

where ||ug || = ||vg || = 1 with ||-|| denoting the [;-norm, 22*:1 dkukvg correspondsto the SVD decom-

position of C but strict orthogonality among u;s and v;s is not required (more details are given

later), Pe(-) is some penalty function and As are the regularization parameters controlling the

degrees of penalization of distinct layers. To prompt sparsity in each pair of u; and v¢, we consider

P q
Pe{ i, (i, e, Vi) } = e D0 > wijkldiuikv |
i=1j=1

@ o\ [(& W L w
= A (W dk)<2wik |u,~k|>(zlek |vjk|), (1.4)
= =
where w; j; = w,({d) wf,':)wﬁ.z) are possibly data-driven weights to be elaborated below. This penalty
term is analogous to the adaptive lasso penalty (Zou, 2006), i.e. it is proportional to the weighted
[1-norm of an SVD layer dkukvg. From this point of view, it assigns the correct amount of penal-
ization to each element of the SVD layer. Interestingly, owing to its multiplicative form as shown
in equation (1.4), it can also be viewed as penalizing each of the singular vectors comprising the
SVD layer, which leads to automatic adjustment of the possibly different degrees of sparsity
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between u; and vi. Another advantage of the penalty term in equation (1.4) is that only one
regularization parameter is required for each pair of singular vectors.

The objective function (1.3) is non-convex and involves multiple regularization parameters.
We have developed an efficient optimization algorithm which can be implemented in parallel.
Moreover, our sparse SVD estimator is shown to enjoy the oracle properties, i.e. it recovers the
correct sparse SVD structure with probability tending to 1 as the sample size goes to oo.

The rest of the paper is organized as follows. We develop the methodology for the unit rank
case in Section 2, with the extension to the higher rank cases elaborated in Section 3. The
biclustering application and several simulation studies illustrating the new methods are given
in Section 4. Some asymptotic results of the method proposed are presented in Section 5. We
conclude in Section 6.

2. Sparse unit rank regression

2.1. Optimization algorithm and initial values
When r* =1, the problem reduces to minimizing the following objective function with respect
to the triplets (d, u, v):

LY —dXuyT 24232 3 wijldurj| Q.1

2 FraZ = ijlauivjl, :
where duv? is the SVD of the unit rank coefficient matrix C, i.e. |ul| =|v|]|=1, and Wij=
w(@ wl(”)w(-”) are data-driven weights. Note that the layer subscript ‘4’ is dropped from all the
notation for simplicity.

Assume that some ,/n-consistent estimator C of C is available, e.g. the reduced rank least
squares estimator (Reinsel and Velu, 1998), whose SVD is given by div ' . Using the perturbation
expansion of matrices (theorem 3, Izenman (1975)), it can be readily shown that the \/n-con-
sistency of C implies that d, it and ¥ are all /n-consistent estimators of d, u and v respectively.
Following Zou (2006), the weights can be chosen as

w@ — |c~l|_7,
wi =i, )T =i, 2.2)
w =i, )T =157,

where v is a prespecified non-negative parameter and |-|~7 is defined componentwise for the
enclosed vector. Here, on the basis of extensive simulations and as suggested by Zou (2006), we
use v =2 in all numerical studies.

The objective function (2.1) admits a multiconvex structure (Gorski et al., 2007). For fixed
u, minimization of function (2.1) with respect to (d,v) becomes minimization with respect to
v=diag(dw™)v of

Ly —XO¥E+A0 3 i 23
j=1

where diag(a) denotes a diagonal matrix with entries of a on its diagonal, y = vec(Y), X®¥) =
diag(w®)~! ® (Xu) and \V = \w@ (22, wl(”) lu;]). The symbol ‘®’ denotes the Kronecker prod-
uct and we shall freely make use of several properties of the Kronecker product; see Schott (2005),
chapter 8. Model (2.3) can be recognized as a lasso regression problem with respect to v, with-
out an intercept term. Moreover, note that X) is always an orthogonal matrix; hence the solu-

tion of problem (2.3) is explicit (Tibshirani, 1996); see lemma 1 below. In contrast, for fixed v,
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minimization of function (2.1) with respect to (d,u) becomes minimization with respect to u =
diag(dw®)uof

1 W12 2\ S 13

sy =X al"+ A leuz'I, (2.4)

=
where X® =v ® X diag(w™)~! and A® = w(d)(Zq lw( )|vj|) Again, this is a lasso regres-
sion problem with respect to u, without an 1ntercept term. However, the design matrix X® is
orthogonal if and only if X is orthogonal.
We can take advantage of the multiconvex structure of the objective function (2.1) in optimi-

zation. Here are the steps of our numerical sparse unit rank regression algorithm for a fixed .

(a) Choose a non-zero initial value for a.

(b) Given u =, minimize function (2.3) to obtain V. Let d = ||diag(w®)~!¥|| and v =
diag(dw®)~1¥.

(c) Given v =¥, minimize function (2.4) to obtain u. Let d = ||diag(w™) la| and a=
diag(dw®™)~1a.

(d) Repeat steps (b) apd (c), until C=duv" converges, i.e. I1C. — ép ||F/||Cp||p < ¢, where C,
is the current fit, Cp, is the previous fit and ¢ is the level of tolerance, e.g. £ = 1076,

This algorithm could also start from updating u with steps (b) and (c) reversed. In either
case, the algorithm uses a block co-ordinate descent structure with two overlapping blocks
of parameters, i.e. (d,u) and (d,v). Within each block, the model is transformed to a lasso
regression problem, for which several fast algorithms have been developed, e.g. the algorithm
LARS (Efron et al., 2004) and the co-ordinate descent algorithm (Friedman et al., 2007). It is
clear that the objective function decreases monotonically along the iterations. The algorithm is
therefore stable and guaranteed to converge, although not necessarily to the global minimum of
the objective function. A multiconvex optimization problem may have multiple local minima,
and its non-convex optimization requires more complicated algorithms (Gorski et al., 2007).
Nevertheless, our limited experience suggests that the iterative algorithm proposed works well.

The following lemma concerns the orthogonal design case for a fixed A. It shows that, con-
ditional on either u or v, the other one along with the singular value d can be estimated via a
simple soft threshholding rule (Donoho and Johnstone, 1995), which is due to the fact that the
solution of a lasso problem is explicit under orthogonal design (Tibshirani, 1996).

Lemma 1. Suppose that XT?( = A, where A is a diagonal matrix with positive diagonal el-
ements. Then the solution (d, 4, V) of model (2.1) satisfies the equations

Ji=sgn(XTY¥) o {AT1(IXTYH| - XOw) Y,
il — )\(v)w<v))+},

where \® = \w(@ E‘II.ZI wﬁ-”) 1971, AV = w@x? Wl(") |i1;], and the symbol ‘o’ denotes the Had-
amard product, which is also known as the entrywise product.

R 1
dv=sgn(Y"Xd) o {
8 aTAd

The estimated coefficients vary with A and produce a path of solutions regularized by .
In practice, the relevant range of A\ equals [Amin, Amax], Where Amax is the smallest A at which
all penalized coefficients are 0, and A, is either 0 or a minimum value at which the model
becomes excessively large in terms of number of non-zero parameters or model estimation
becomes numerically unstable (Breheny and Huang, 2009). To find the solution path, we sug-
gest starting at Amax — &, where ¢ is a small positive number, and proceeding towards Apiy.
Because the path is continuous, the estimate from the previous value of A can be used as the
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initial value for the next value of A to speed up the computation. This approach works very
well in practice, and the algorithm usually converges within only a few iterations. We also point
out that the reverse approach, which starts from small A and goes towards Amax, may fail occa-
sionally. This is because when A\ proceeds close to Apmax from below, with an overfitted initial
value, the inner updating step could produce zero solution for either the left or right singular
vector, so the algorithm cannot proceed. The following lemma determines A\pax and the initial
non-zero solution of problem (2.1) corresponding to Apax — € explicitly.

Lemma 2. Denote Y =(y(1), . ..,¥()) and X=(X(1),...,X(p). Then
1

Amax = max{ ‘ fxg)y(j)
Wi j

9lzlaap9J:1a9q}7

where w;; =w(d)w§”>w§-”). Moreover, letting (i*, j*) = arg max(,-,j)|(1/wij)x$)y(j)|, then the
initial non-zero singular vectors of problem (2.1) denoted as (u®, v(?) are given by

w=1,  uV=0,vi=1,...,pandi#i*
0 0 . .
vﬁ*):sgn(xz*)y(j*)), UF/):0, Vj=1,...,qand j#j*.

Proof. Note that the minimization problem (2.1) has the same Ap,x as the lasso model % lly —
Hpl2 + A S, |pil, where y = vec(Y), H = diag(w@w®)~! ® (X diag(w™)~1) and p= (p1,. ..,

p pq)T is a pg x 1 vector. Then A\pax and the initial non-zero solution can be obtained as above
by the Karush—Kuhn-Tucker optimality conditions for the lasso problem.

We have implemented our algorithms in R (R Development Core Team, 2008). For all the
numerical studies, we follow the approach of Friedman e al. (2010) and compute solutions
along a grid of 100 A-values that are equally spaced on the log-scale.

2.2. Regularization parameter selection
Once a regularization path has been fitted, it is important to be able to choose an optimal
point along the path. For small-scale problems, the optimal A can be chosen by K-fold cross-
validation (CV), based on the predictive performance of the models (Stone, 1974). For large-
scale problems, the CV method can be computationally expensive; hence alternative approaches
including generalized CV and information criteria have been widely used. Although all these
methods may be applicable here, we propose a Bayesian information criterion BIC because of
its computational efficiency and promising performances on variable selection.

Denote (d (A), aW, \A’(A)) as the fitted value of (d, u, v) with the regularization parameter being
A, and define BIC as

log(gn)
qn

BIC(\) =log{SSE(\)} +

df), (2.5)

where SSE(\) =Y — Q(A)Xﬁ(A)G(A)T ||f': denotes the sum of squared error, and df()) is the effec-
tive number of parameters or the degrees of freedom of the model.

Zou et al. (2007) showed that the number of non-zero coefficients is an unbiased estimator of
the degrees of freedom for the lasso problem. The non-convex objective function (2.1) admits
a conditional lasso structure, as shown in the preceding section. Therefore, we propose the
following estimator for df(\):

dFy=3 16GY £0) + 5 16V #0) -1,
i=1 j=1
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where I(-) is the indicator function. Note that 1 degree of freedom is lost because there are two
unitary constraints (|jul| =1 and ||v|]| =1) and one additional free parameter d. We examine the
performance of the proposed criterion via simulation in Section 4.

3. Extension to the higher rank cases

To obtain sparse estimates of multiple layers, one naive approach consists of sequentially
performing the proposed sparse unit rank regression, each time with the data matrix Y
replaced by the residual matrix that is obtained by subtracting previously estimated
layers from the original data matrix. We refer to this method as the sequential extraction
algorithm (SEA). This idea has been used in many penalized matrix decomposition problems
(Witten et al., 2009; Lee et al., 2010) in which X is an identity matrix, and the rationale is
that, for an unpenalized model (A =0), the SEA method can sequentially extract the SVD
layers of the data matrix Y itself. However, in general regression settings, the sequentially
extracted layers by the SEA can be shown to correspond to another interesting decomposi-
tion of the coefficient matrix (note that SVD is only one of many decompositions of a ma-
trix), and it need not produce SVD layers of the coefficient matrix C, so it is not suitable
for recovering the desired sparse SVD structure in C; see the details in the supplementary
materials.

Here we propose an exclusive extraction algorithm (EEA). The idea is to seek a C with sparse
SVD structure near some initial consistent estimator, e.g. the least squares reduced rank regres-
sion estimator C, whose SVD is given by EZ;IJkﬁk?kT = Zz*:le. The problem can then be
decomposed into r* parallel sparse unit rank regression problems, by forming r* ‘exclusive
layers’ Yi (k=1,...,r*) based on C. The EEA is as follows.

(a) Foreachke{l,...,r*}:
(i) construct the adaptive weights w,({d) = |cjk|:7, vg,ﬁ") =|tig|~7 and w,(cv) =|Vi|™7;
(i1) construct the exclusive layer Yy =Y — X(C — Cy);
(ii1) find (dy, Ok, Vi) by performing the sparse unit rank regression of Y on X. The optimal
A can be chosen by either CV or some information criterion, e.g. BIC.
(b) The final estimator of C is given by C = 22*:1 c?kﬁkflz.

In the above EEA algorithm, the computational cost increases linearly in r*, and the esti-
mation for different layers can be performed in parallel. Our simulation studies confirm that
this one-step algorithm works well. Moreover, with suitable choice of )i, this one-step EEA
estimator is /n consistent and it also consistently estimates the sparsity pattern in the singular
vectors; see the details in the supplementary materials.

In practice, the quality of the EEA estimation may partly depend on the initial estimator of C
which is used to form the exclusive layers. However, since the EEA estimator is consistent, it can
be used to form presumably more accurate exclusive layers. Therefore, to improve estimation,
the EEA algorithm can be performed iteratively, each time using the previous sparse estimates
as initial values to refine the estimation. We call this method the iterative exclusive extraction
algorithm (IEEA).

(a) Start from some initial estimator C® (e.g. C) to form the exclusive layers and to construct
adaptive weights; perform the EEA method to obtain CV.

(b) On the basis of C?, perform the EEA method to obtain C¢+D.

(c) Repeat step (b) until C@ converges according to some stopping criterion, e.g. [|C0H+D —
CO|/IICD| < &, where ¢ is the level of tolerance, e.g. ¢ =107°.
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In all simulation studies and real applications that are reported below, we used the reduced
rank least squares estimator as the initial estimator for both the EEA and IEEA algorithms.
For p > n, the initial least squares estimator cannot be computed because the Gram matrix
XTX is singular, in which case a small positive constant, e.g. 10~#, can be added to the diagonal
elements to make the matrix invertible, which was done in our numerical studies. We note that
it has recently been shown by Bunea ez al. (2011) that the consistency result of the reduced rank
least squares estimator (using the Moore—Penrose inverse) can be extended to high dimensional
situations, i.e. p > n. Alternative initial estimators are the ridge regression estimator and the
nuclear norm penalized least squares estimator (Yuan et al., 2007).

The TEEA algorithm can be regarded as a way to solve the general optimization problem
(1.3), i.e. the algorithm has a block co-ordinate descent structure, with each SVD layer as one
block. To see this clearly, suppose that the current estimate is ¢V = E’_l Ck Then, for each
k=1,. the objectlve function (1.3) conditional on Ci ), re{l,. *} and r #k, can be
ertten as 5 ||Y — deukvk ||F +Pe{ Ak, (di, ug, Vi) } + constant \ivlgere Y =Y— X(C( 0 C}({z))’
which is exactly the objective function that we solve to obtain Ck in the IEEA algorithm. The
selection of the regularization parameters is nested within the iterative algorithm, which avoids
using the computationally expensive grid search of r* regularization parameters. Our experience
from simulation studies and real applications suggests that the estimation can be substantially
improved on only one or two additional iterations, and the IEEA algorithm typically converges
within only a few iterations.

The optimization is carried out locally near an initial consistent estimator of C and, to
accommodate efficient search of the sparsity pattern within each of the singular vectors, the
exact orthogonality among the left or right singular vectors is not enforced. Consequently, the
algorithms that are presented here may not produce exact orthogonality among the estimated
layers. However, we have shown that our estimators of different layers are consistent, and the
relaxation of exact orthogonality improves local search efficiency and yet preserves the oracle
properties; see Section 5 and the on-line supplementary materials. So in this sense our sparse
estimators of the SVD layers enjoy asymptotic orthogonality. Although it remains an open
problem to derive an efficient estimation method for finding jointly sparse and orthogonal SVD
layers, we believe that our proposed methods suffice for most applications.

4. Simulation and real applications

4.1. Unit rank biclustering
In this simulation study, we consider a unit rank biclustering problem. Let C=duv bea 50 x 100
unit rank matrix (p =50 and g =100) with d =50 and

i=(10, 10,8, —8,5, —5,rep(3, 5),rep(—3, 5), 1ep(0, 34)) T,

u=1/[lu,
v=(10,9,8,7,6,5,4,3,1ep(2, 17),1ep(0, 75)) T,
v=V/|IVl,

where rep(a, b) denotes a vector of length b, whose entries are all equal to a. Let Y=C+E,
where the elements of E are IID samples from N(0, 1), which makes the signal-to-noise ratio
SNR approximately equal to 0.5.

Lee et al. (2010) used this example to compare their sparse SVD (SSVD) method with several
other popular biclustering methods. Their model corresponds to the special case of model (1.1)
that X is a 50 x 50 identity matrix (p =n = 50) with an additive penalty form A X" w|du;| +
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Table 1. Comparison of sparse reduced rank regression (SRRR) with the
SSVD method proposed by Lee et al. (2010)

Method Average and %% Average and % Misclassification
of correctly of correctly rate (%)
identified Os identified non-0s

SRRR v 73.69 (98.25%)  24.78 (99.13%) 1.53
u 33.90 (99.70%)  16.00 (100.0%) 0.21
Overall  107.58 (98.70%)  40.78 (99.46%) 1.09
SSVD v 73.95(98.60%)  24.73 (98.93%) 1.32
u 33.77(99.32%)  16.00 (100.0%) 0.46
Overall  107.71 (98.82%)  40.73 (99.35%) 1.04

)\(”)E?ZIW;U) |dv;|, where A and A are two distinct regularization parameters. The SSVD
method is effected via block co-ordinate descent, i.e. alternately updating u and v, with \®
and A also alternately selected by BIC within the co-ordinate descent iterations (Lee et al.,
2010). Therefore, the SSVD method can be regarded as a special case of our proposed sparse
reduced rank regression method, although Lee et al. (2010) did not make a connection with
the reduced rank regression and did not study the theoretical properties of their estimator.
Nevertheless, the SSVD method was found to outperform other methods greatly in terms of
recovering the desired sparsity structure. Hence, we compare our method with only the SSVD
method.

We use our proposed sparse unit rank regression method (under orthogonal design), and
the optimal X is chosen on the basis of BIC. We replicated the experiment 1000 times. Table 1
contrasts the simulation results of our method with those of the SSVD method. It shows that
our method enjoys extremely low misclassification rates, which are comparable with those of
the SSVD method; the misclassification rate of identifying v, for example, is defined as the
average proportion of both incorrectly identified Os and non-zeros in ¥ from all runs. We have
also compared the two methods in terms of estimation accuracy which is measured by the
average scaled mean-squared error SMSE from all runs, i.e. SMSE = 100|C — é||% /pq, and
they are very similar to each other (sparse reduced rank regression, 1.33; SSVD, 1.27). Note
that only one regularization parameter is used in our method, but the more parsimonious
penalty term (1.4) is capable of recovering the correct amount of sparsity in both u and v. The
computation of our method is very fast, and the whole simulation exercise took only a few
seconds.

4.2. Higher rank examples

We compare the performances on sparse SVD recovery of the SEA and IEEA estimators and
compare their prediction and estimation performances with the ordinary least squares (OLS)
estimator, reduced rank regression (RRR) estimator and the nuclear norm penalized (NNP)
least squares estimator that was proposed by Yuan ez al. (2007) in the general regression setting.
We construct X by generating its # rows as IID samples from a multivariate normal distribution
MVN(,T'), where ' = (I';;) px p and I';; = 0.51"=JI. Two scenarios in terms of moderate versus
high model dimensions are considered, i.e. model I, p, ¢ <n, and model I, p, g >n.

(a) Model I (p=¢g=25,n=50 and r* =3): let C be a 25 x 25 rank 3 matrix whose SVD is
given by 22:1 dkukvg with d| =20,d> =10 and d3 = 5. The us are given by
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iy = (unif(A,, 5), rep(0, 20)) T,
iy = (rep(0, 5), unif(A,, 5), rep(0, 15)) T,
i3 = (rep(0, 10), unif(A,, 5), rep(0, 10)) T,
we =/ ||| for k=1,2,3,
and the v;s are given by
Vi = (unif(A,, 10), rep(0, 15)7T,
Vo = (rep(0, 12), unif(A,, 10), rep(0, 3)) T,
V3 = (1ep(0, 6), ¥1,7:8, — V1,9:10, Unif(Ay, 2), —¥2,13:14, V2, 15:16, 1ep(0,9)) T,
Vi =Vi/|IVe|l fork=1,2,3,

where unif(A4, b) denotes a vector of length » whose entries are IID samples from the
uniform distribution on the set of real values A, A, =[—1, —0.3]U[0.3,1], A, ==+1 and
Vk.a:p denotes the ath—bth entries of V.

(b) Model II (p =g =60,n=750,r* =3): we use the same setting as in model I, except that
each 25 x 1 singular vector in model I is appended with 35 Os to make a 60 x 1 vector.

The data matrix Y is then generated by Y = XC + E, where the elements of E are IID samples
from N(0, 02), and o is chosen to make different SNRs calculated on the basis of the third layer
and the noise matrix E. In each setting we replicated the experiment 100 times. The non-zero
entries of vis have some positional overlap with each other, and the non-zero entries of us
take distinct values, some of which can be quite small. These settings make the estimation quite
challenging.

For the SEA and IEEA methods, the regularization parameters are chosen on the basis of
BIC, so they are both tuned towards sparsity recovery and model selection; for speeding up com-
putation, the IEEA algorithm was carried out with only three iterates. (We have also compared

Table 2. Performances of the IEEA and SEA on sparse SVD recovery

Model SNR Results for IEEA Results for SEA

Layer  Layer  Layer  Overall — Layer  Layer  Layer  Overall

1 2 3 1 2 3

1 FDR (%)  0.125 1.9 2.7 5.8 3.5 8.3 9.0 9.1 9.9
0.25 0.9 1.0 2.7 1.6 4.6 6.8 7.9 6.8

0.5 1.1 1.4 22 1.6 7.4 11.7 8.0 10.0

1 0.9 0.9 1.2 1.0 11.0 17.6 11.2 14.5

FNR (%)  0.125 0.0 1.6 14.4 53 0.0 3.1 15.5 6.2

0.25 0.0 0.2 2.5 0.9 1.0 3.6 5.0 32

0.5 0.0 0.0 1.3 0.4 0.0 0.5 1.9 0.8

1 0.0 0.0 0.3 0.1 0.0 1.9 2.4 1.4

11 FDR (%)  0.125 6.4 10.6 11.4 10.4 7.7 15.6 13.4 13.4
0.25 0.7 5.1 4.9 3.9 17.3 17.0 12.8 17.7

0.5 2.9 2.0 2.3 2.6 16.8 21.7 17.1 20.5

1 5.7 4.3 2.1 4.5 18.4 21.7 16.2 20.6

FNR (%)  0.125 1.1 4. 10.1 5.2 0.3 9.9 4.7

0.5 0.0 0.1 0.8 0.3 0.0 2.3 1.2

3.9
0.25 0.0 0.5 2.9 1.2 0.0 2.5 4.8 2.4
1.5
1 0.0 0.1 0.3 0.1 0.0 0.1 0.3 0.1
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the proposed BIC with fivefold CV for the IEEA estimation; the results are not shown here. In
general BIC yields a slightly better selection performance whereas its performance on estima-
tion or prediction is comparable with that of CV, which confirms that the suggested BIC works
well.) In contrast, the RRR and NNP methods are tuned for prediction. The RRR estimators of
various ranks and NNP estimators over a very fine grid of tuning parameters are first computed.
In particular, we use the accelerated proximal gradient algorithm that was proposed by Toh and
Yun (2009) for NNP estimation. The rank of the RRR estimator and the tuning parameter of
the NNP estimator are then selected on the basis of the best prediction accuracy evaluated on
a very large independently generated validation data set, of size n = 1000 (Bunea et al., 2011).
For each method, the model accuracy is measured by the average SMSE from all runs, i.e.
SMSE =100|C — C||%:/pq for estimation (error Er-Est), and SMSE =100 XC — XC||%/nq for
prediction (error Er-Pred).

Table 2 reports the performances on sparse SVD recovery by the SEA and IEEA methods.
Since model II involves a much larger number of irrelevant responses or predictors than model
I, the recovery of the former is more difficult. Overall the IEEA method performs very well in
terms of having low false discovery rates FDR and well-controlled false negative rates FNR.
Not surprisingly, the SEA method performs much worse. Its FDRs are much higher than those
of the IEEA method because of its inability to distinguish the different SVD layers, and its
FDRs do not seem to decrease as the SNR increases for both model I and model II.

We then investigate the prediction and estimation accuracy of the SEA, IEEA, OLS, RRR
and NNP estimators. The simulation results are shown in Table 3. It can be seen that, for both
model I and model II, the IEEA method performs the best, followed by the SEA, RRR and
NNP methods, in this order. The excellent estimation performance of the IEEA and SEA is
due to their capability of response or predictor selection, and this property is especially use-
ful when the model dimension is high and the number of irrelevant responses or predictors is
large.

Table 3. Estimation and prediction accuracy of the IEEA, SEA, OLS, RRR
and NNP estimators

Model  SNR Error Results for the following methods:

IEEA  SEA OLS RRR NNP

I 0.125  Er-Est 3.29 4.28 55.32 9.90 10.99
Er-Pred 52.10 67.37 416.34 106.40 139.10

0.25 Er-Est 1.10 1.52 27.21 4.56 6.65

Er-Pred 17.68 2320 197.12 46.16 74.55

0.5 Er-Est 0.57 0.99 15.12 2.44 3.75

Er-Pred 9.48 1503 11045 2589 43.74

1 Er-Est 0.23 0.52 7.41 1.17 2.19
Er-Pred 4.01 7.59 52.95 11.87 23.23
11 0.125  Er-Est 0.52 0.51 51.50 4.87 5.01

Er-Pred 12.86 14.84 342.59 60.12 72.00
0.25 Er-Est 0.15 0.29 28.09 3.89 422
Er-Pred 4.47 7.85 176.22 23.64 45.44
0.5 Er-Est 0.06 0.17 14.81 3.23 3.67
Er-Pred 1.80 4.27 84.94 9.67 26.87
1 Er-Est 0.03 0.10 8.40 2.75 3.13
Er-Pred 0.84 2.35 42.57 4.55 15.43
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4.3. Misspecification of the rank

In practice, the rank of C may be misspecified. For cases when the specified rank, which is
denoted as rg, is larger than the true rank r*, the penalized sum-of-squares criterion (1.3) may
shrink any redundant SVD layer to a zero matrix and hence possibly reduce the rank of C to
r*, owing to its shrinkage effect on the singular values. In contrast, for cases with ro <r*, it is
expected that the sparsity-inducing criterion will lead to the recovery of the first ry dominating
layers, i.e. layers with the largest ry singular values of the true sparse SVD of C.

We examine the robustness of the proposed method against rank misspecification via simula-
tion, using models I and II in the preceding section, but now the rank is misspecified to be either
ro=2 or ro =4. We performed the IEEA estimation with rank rg, which is denoted as IEEA(ry),
and used the rank r( least squares estimator as the initial estimator. For simplicity we ran the
IEEA for six iterations, with the regularization parameters chosen by BIC. For comparison, we
also performed the RRR analysis with the rank determined by fivefold CV and the maximum
rank set to ry, which is denoted as RRR(CV, max =rg). The experiment was replicated 100 times
for each SNR-level.

Table 4 summarizes the simulation results. We report the frequency of the estimated rank
being r* when ry > r*, and the frequency of the estimated rank being ry when ro < r* (Rank);
the model accuracy is again measured by the average SMSE from all runs as defined earlier
(Er-Est and Er-Pred). FDR and FNR for the IEEA method are calculated on the basis of the

Table 4. Performances of the IEEA when the rank is misspecified

Model SNR Rank FDR FNR Er-Est Er-Pred Rank Er-Est Er-Pred
IEEA(4) RRR(CV, max=4)
1 0.125 3 (62%) 5.7% 14.5% 4.3 82.4 3 (53%) 10.4 124.1
0.25 3 (64%) 7.0% 3.8% 1.8 33.1 3 (100%) 4.8 50.7
0.5 3 (87%) 2.4% 0.3% 0.5 8.9 3 (100%) 2.3 24.1
1 3 (90%) 1.4% 0.1% 0.2 4.2 3 (100%) 1.1 12.2
IEEA(2) RRR(CV, max=2)
0.125 2 (100%) 3.4% 1.4% 6.3 123.2 2 (98%) 11.1 157.9
0.25 2 (100%) 3.0% 0.4% 5.0 110.4 2 (100%) 7.6 126.6
0.5 2 (100%) 3.2% 0.4% 4.7 98.8 2 (100%) 6.1 104.7
1 2 (100%) 4.6% 0.8% 4.6 97.9 2 (100%) 53 100.0
IEEA(4) RRR(CV, max=4)
11 0.125 3 (38%) 14.6% 16.2% 0.7 27.3 3 (62%) 4.8 44.8
0.25 3 (49%) 14.3% 6.7% 0.3 13.0 3(93%) 3.8 21.5
0.5 3 (64%) 12.2% 1.3% 0.1 2.9 3 (96%) 3.1 10.2
1 3 (83%) 5.9% 0.2% 0.0 1.1 3(97%) 2.8 4.8
IEEA(2) RRR(CV, max=2)
0.125 2 (100%) 3.2% 1.0% 0.9 459 2 (89%) 5.0 74.5
0.25 2 (100%) 2.0% 0.3% 0.8 38.9 2 (100%) 4.0 46.8
0.5 2 (100%) 4.3% 0.5% 0.8 39.9 2 (94%) 3.6 47.0
1 2 (100%) 6.6% 0.1% 0.8 39.8 2 (99%) 33 42.0
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ro estimated SVD layers and their corresponding true counterparts with the largest ry singular
values (true redundant singular vectors are zero vectors).

It can be seen that our proposed method is robust against rank misspecification. When rg =4,
the redundant fourth layer is often penalized to be a zero matrix so that the frequencies of recov-
ering the true rank are generally high. When ry =2, our method always leads to the recovery of
the first two dominating layers of the true sparse SVD. For cases with low SNR, our method
may have better rank recovery or discovery performance than the RRR method; for cases with
moderate to high SNR, the RRR method shows better rank determination performance espe-
cially for ro =4. However, our method always outperforms the RRR method in both estimation
and prediction, and further examination shows that, even if our method may occasionally fail to
eliminate the redundant layer, the estimated redundant layer is generally very sparse and weak,
rendering our method immune to excessive overfitting. We also point out that the estimation,
prediction and variable selection performances of the method proposed are, as expected, all
slightly worse than the case of known rank; see Tables 2 and 3.

4.4. Biclustering: lung cancer data

We illustrate by a real application the effectiveness of the proposed method in microarray bi-
clustering analysis (Busygin et al., 2008). The goal is to identify sets of biologically relevant
genes that are expressed at different levels in different types of cancer by using microarray gene
expression data, in which usually thousands of genes are measured for only a few subjects. The
method proposed is well suited for such a simultaneous selection problem. We show that a
special case of the proposed regression method with an identity design matrix can serve as an
efficient biclustering tool. Our method is flexible and more general in that it also allows easy
incorporation of the cancer group information, if available, to perform a supervised search of the
gene clusters. Moreover, the method can be further extended to adjust for ‘unwanted’ expression
heterogeneity, on which a general statistical microarray biclustering method can be built.

The gene expression data that we consider here consist of expression levels of g = 12625 genes,
measured from n = 56 subjects. Among the 56 subjects, 17 of them were known to be normal
(Normal), and the remaining 39 were known to be with one of three types of lung cancer: 20 of
them were with pulmonary carcinoid tumours (Carcinoid), 13 with colon metastases (Colon)
and six with small cell carcinoma (SmallCell). The data form an n x ¢ matrix Y whose rows
represent the subjects, grouped sequentially by the type of cancer (Carcinoid, Colon, Normal
and SmallCell), and the columns correspond to the genes. A more detailed description of the
data can be found in Bhattacharjee et al. (2001). The data were analysed by Liu ez al. (2008) and
more recently by Lee ez al. (2010), in which the SSVD method was proposed for biclustering.

On letting the covariate matrix X be the n x n identity matrix, our sparse reduced rank regres-
sion model reduces to a low rank matrix approximation problem for Y, which can serve as an
unsupervised learning tool for biclustering since the available cancer type information is not
used. In this special case, our method shares a similar idea with the SSVD method in Lee e? al.
(2010). Not surprisingly, our estimation result is also similar to that of the SSVD method. Hence
we omit the detailed estimation results, although it is worth noting that our proposed method
is indeed capable of simultaneously linking sets of genes to sets of subjects, and the associations
between gene groups and types of cancer are clearly revealed in three identified sparse SVD
layers. Heat maps of the original gene expression matrix, the reduced rank estimate and the
three estimated layers are plotted in Fig. 1. To visualize the gene clustering better,

(a) all entries of the plotted matrices are divided by the maximum absolute value of the
entries,
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Fig. 1. Heat maps of (a) the original gene expression matrix, (b) the reduced rank estimate and (c), (d),
(e) the three estimated SVD layers by unsupervised biclustering: the 5200 selected genes and the other
1000 randomly chosen unselected genes are plotted; all entries of the matrices plotted are divided by the
maximum absolute value of the entries; the genes are sorted hierarchically (firstly the genes are sorted on
the basis of the ascending order of the entries of ¥4, which automatically forms three gene groups according
to the sign of the entries; secondly, within each group, the genes are sorted on the basis on V,, and then nine
gene groups are formed; finally, the sorting procedure is repeated on the basis of V3; the horizontal lines in
each panel reveal the four types of cancer of the subjects (Carcinoid, Colon, Normal and SmallCell from top
to bottom); the vertical lines in each panel reveal the 1000 unselected genes at the second column

(b) only the 5200 selected genes plus 1000 randomly chosen unselected genes are plotted and
(¢) the genes in Fig. 1 are sorted hierarchically.

The 1000 unselected genes are included to show that the zero-out areas in the estimated SVD
layers indeed correspond to non-informative areas of the original gene expression matrix. A
very strong contrast between the Carcinoid group and the Normal group can be seen from
the first estimated SVD layer, and another strong contrast between the Colon group and the
Normal group can be seen from the second layer. However, because of a failure in accounting
for within-group variations, the unsupervised learning may also provide irrelevant or even
inconsistent information about gene—cancer associations, as also found in Lee et al. (2010).
In particular, in the third estimated SVD layer, some of the subjects of the Carcinoid group
had positive responses, whereas others in this group did not respond or even showed oppo-
site responses. Although such information may be valuable in that it suggests possible subgroup
structure in the Carcinoid group, it is irrelevant on how to distinguish the four known categories.

If the cancer type information is available as for this data set, such information can be incor-
porated for supervised learning of the gene clusters and their contrasts across different types
of cancer. This can be done by constraining the left singular vectors to be linear combinations
of the dummy variables of the types of cancer, i.e. we fit the data by model (1.1) with a 56 x 4
covariate matrix

(1/4/20)159 0 0 0
X — 0 (1/4/13)113 0 0
- 0 0 (1//17)15 0 ’
0 0 0 (1//6)1¢

where, for instance, 15 is a 20 x 1 vector consisting of 1s. The coefficient matrix Cisa 4 x 12625
matrix, and each of its 1 x 4 left singular vectors can be interpreted as group effects rather than
individual subject effects, whereas each of its right singular vectors still represents the gene
effects. Since X is still orthogonal, computation remains fast. This model implies that, for the
rank 3 SVD approximation of Y, the left singular vectors equal the products of X times the left
singular vectors of C; hence subjects of identical type of cancer enjoy the same mean structure.
Extending the model to allow mixed effects in the gene—cancer associations is an interesting
future research problem.

We then perform the supervised learning by using the IEEA method with BIC. We consider
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Fig. 2. Heat maps of (a) the original gene expression matrix, (b) the reduced rank estimate and (c), (d), (e)
the three estimated SVD layers by supervised learning: all set-ups are the same as in Fig. 1

the first three layers since Y is centred so that it is orthogonal to 154, but 154 lies in the column
space of X; in fact, the four estimated singular values are 200.22, 119.27, 77.83 and 0.000065.
Only 4663 genes are selected overall. Among those selected, 3507, 2231 and 1089 genes are
involved in the three layers. Heat maps of the original gene expression matrix, the reduced rank
estimate and the three estimated layers are plotted in Fig. 2. By supervised learning, more than
1000 genes are further eliminated in the three layers compared with unsupervised learning, and
only information about gene—cancer type associations are extracted and kept. Yet our sparse
estimator still reveals the primary chequered structure in the original gene expression matrix as
shown in Figs 2(a) and 2(b). The first SVD layer presents a strong contrast between the Car-
cinoid group and the Normal group, the second layer clearly presents a contrast between the
Colon group and the Normal group and the third layer singles out the SmallCell group. Some
weaker contrasts that were previously seen in the unsupervised learning have been eliminated
since they might be explained by within-group variations. In particular, in the third SVD layer,
the subgroup structure that was found earlier in the Carcinoid group is now absent from the
supervised learning results because it is irrelevant with respect to the known group information.

In gene expression studies, expression heterogeneity due to technical, genetic, environmental
or demographic variables is very common (Leek and Storey, 2007). It is desirable to adjust for
these covariate effects or ‘unwanted’ variations while studying the clustering with respect to
the primary variable, e.g. type of cancer. This can be done via a reduced rank regression model
with two sets of regressors: Y =XC + ZG + E where X is an n x p matrix constructed from
the primary variable such as cancer group information, C is a p x g matrix which may admit a
reduced rank sparse SVD structure, Z is an n x [ matrix consisting of additional / (confounding)
variables measured on the subjects, G is an [ x ¢ coefficient matrix that may be of full rank and
the other terms are defined as in model (1.1). This type of model formation was first suggested
in the seminal work of Anderson (1951) and was studied by Reinsel and Velu (1998), chapter
3, under the classical least squares setting. Here, under our regularized regression framework,
the above extension adds no significant difficulty in estimation. One could still use a block co-
ordinate descent algorithm to update C and G iteratively until convergence. We shall report
investigations of this approach elsewhere.

5. Theoretical properties

We state the main theoretical results and outline their proofs, leaving details and further results to
the on-line supplementary materials. In this section, the regularization parameters are assumed
to be a function of the sample size, and hence are written as )\,(C"). The following conditions are
needed in the theoretical developments.

Condition 1. (1/n)XTX — T almost surely as n — oo, where I is a fixed, positive definite
matrix.
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Condition 2. The errors ¢; (i=1,...,n) are IID with E(e;) =0 and cov(e;) =3, a positive
definite matrix.

Condition 3. )\,((”)/\/n — 0 and ()x,((")/\/n)nw2 —o0asn— oo, fork=1,...,r* with v>0
being prespecified.

In what follows, let Z 43 denote a submatrix of an arbitrary matrix Z whose rows and columns
are chosen from Z according to some index sets .A and 5 respectively. For simplicity, we may
write Z gz =Z.5 and Z 45 =Z. 4. when respectively A and B consist of all the row and column
indices.

The set of all p x ¢ matrices of rank smaller than or equal to r (r < p, q), which is denoted
as Q) admits a manifold structure. Any matrix Z € Q) can be written as a product Z=UVT,
where U is a p x r matrix and V is a g x r rank r matrix. This decomposition is not unique
since Z=UQ~'QVT for any r x r invertible matrix Q. However, since rank(V) =r, there is an
r X r submatrix V g of V, whose rows are linearly independent and hence is invertible. It then
follows that VV . " has a submatrix that is the r-dimensional identity matrix I,. On the basis of
this observation, Q) can be presented as a manifold that is a union of (‘1) subsets or charts
each of which admits a Euclidean co-ordinate system, i.e. Q") =U Qi I where IT consists of
all size r subsets of the set {1,...,q} and

Qg) = {UVT; Uisa p x r matrix and V is a ¢ x r matrix with V.. =1,}.

Now suppose that the true model is given by expression (1.1), where the rank of the coefﬁcient
matrix C has been correctly identified to be r* Let C=U*V*T where U* = (u}) px,+ isa p x r*
orthogonal matrix and V* = (v k)qxr* is a ¢ x r* orthogonal matrix. Here for simplicity the
singular values have been absorbed into the singular vectors. Because the parameter space Q")
is a manifold, without loss of generahty, we can assume the true coefficient matrix C e Q(r )
where £L={I},...,l+} is a fixed size r* index set.

Let 0,(U,V) denote the objective function as in equation (1.3), i.e.

r*
0,(U,V)=1Y - XUVT |2 + 2<A,E"> 5 w,]km,kv,u) (5.1)
k=

i=1j=1

and let (U(n), V(")) =argmin{Q, (U, V)}.

Theorem I (existence of a local minimum). Suppose that eondmons 1 and 2 are satisfied, and
suppose ’E)hat )\(") //n—> A =0asn 550 for k=1,. *. Then ther)e is a local minimizer
WP V") of Qn(U V), such that U~ —U*||=0 (n*1/2) and [V = V¥ =0,(n"1/?).
T heorem 2 (asymptotic normality). Suppose that conditions 1-3 are satisfied. Let vector u(" )
and u® ” collect all entries in respectlvely U™ and U* correspondmg( to the non-zero elements
in U*, and let vector V(B) and v} respectively collect all entries in V " and V* corresponding
to the non-zero elements in V*. Then

(a) (u(”) —u%)/n and (v(") vi)4/n are both asymptotically normally distributed with
zero mean and
(1) @%) —u*)/n—q0and @ —vi)/n—40asn— oo.
A A B B

Theorem 3 (selection con51stency) Suppose that conditions 1-3 are satisfied. Let A= g(l ,k)
uj, #0} and B={(j.k): v, #0}, and let A® = {(i,k):if} #0} and B® ={(j.k): 9} #£0}.
Then P(A® = A) > 1 and P(B™ = B) — 1 as n — cc.

We outline the key steps in proving the preceding theorems.
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(a) We start from constructing the adaptive weights w;  based on the SVD of some initial
estimator of C, as shown in equation (2.2). In particular, the rank r* least squares esti-
mator of C is explicitly given by C=X"X)"'XTYHHT where H= (h,, ..., h,+) and hy is
the normalized eigenvector that corresponds to the kth largest elgenvalue of the matrix
YTX(XTX)~IXTY. Itis shown that vec(C — C) \/n —4 N(0, Z¢) where 3¢ isexplicitly given
by expression (2.36) in Reinsel and Velu (1998). Recall that C= E dkukva is the SVD of
C,whered; >...>d»>0. Similarly, let dy, i and v, Vi (k=1,. *) be the singular values
and left and right singular vectors respectively of C. Then usmg the perturbation expan-
sion of matrices (theorem 3, Izenman (1975)), we showed that (dy — di)/n, (U —ug)/n
and (Vp —vp)/n for k=1,...,r* are jointly asymptotically normally distributed with
zero mean. It turns out that such adaptive weights as designed in equation (2.2) play an
important role in achieving selection cons1stency

(b) We have assumed that C e Q(r ) for a fixed size #* index set £. This is equivalent to setting
the submatrix V7 of V*, Wthh is also denoted as Q, to be invertible. Denote U= U*QT
and V=V*Q~! so that V;. =1 and C=U*V*T=UVT. A neighbourhood N'(C, h,,),
which is of rad1us hy, = O(/[log{log(n)}] and centred at C, can then be constructed in
the chart Qﬁ , 1.e.

.1 N\ (e 1T .AN\T . o o L
N(C,h)={<U+\/nA) <V+ \/nB> s A= (air) pxrr With |Al <hyp, B= (b ji) g1+

with B;. =0 and |B|| <hn.}

1N\ N L
{(U* + «/”lA) (V* + \/nB> s A= (aik) pxr with [|[A]|<h,,B= D) gxr+

with B, =0 and ||B| <h,,.},

where A =1;‘Q’T and B=BQ. We then prove theorem, 1 by showing the existence of a
local minimum in the interior of N'(C, h,), i.e., for any given & > 0, there is a sufficiently

large constant 4, such that

P[ inf {Qn<U*+1A,V*+1B>>Qn(U*,V*)}} >1—-e¢.

|AI=1Bl=h, Vn Vn

(c) To prove theorem 2, we first show that ¥,,(A,B) = Q,{U* + (1//n)A,V*+(1//n)B} —
0, (U*,V*) defined in N (C, h,,) converges in distribution to a biconvex limit function
U(A,B). Studying the behaviour of (A, B) is challenging because of its non-convexity.
However, by adopting a profile likelihood approach and through extensive use of matrix
algebra, it can be shown that W (A, B) has a unique minimum. We then prove theorem 2
by applying the ‘Argmax’ theorem (page 81, van der Vaart (2000)) for —W¥

(d) The objective function (5.1) admits a conditional lasso structure, as similarly shown in
Section 2. Theorem 3 is then proved by using the consistency results that were established
in theorem 2 and a set of conditional Karush—Kuhn-Tucker optimality conditions derived
from the conditional lasso models.

By theorems 2 and 3, we have shown that the proposed fully iterative IEEA method, which
aims at solving the general objective function (1.3), achieves the oracle property. In fact, it can
also be shown that the EEA method proposed, which is non-iterative and relies on some initial
J/n-consistent estimator to reduce the general problem to multiple parallel unit rank problems,
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also enjoys desirable large sample properties, e.g. asymptotic normality and selection consis-
tency. The proofs are very similar to those of the general theory in the unit rank case, except for
only a few key differences; for example the ¥,,-function in the EEA case involves some extra addi-
tive terms that are functions of the initial estimator. It turns out that the boundedness of these
terms follows easily from the ,/n-consistency of the initial estimator, the perturbation expansion
of matrices (theorem 3, Izenman (1975)) and the delta method. We omit the details here.

6. Discussion

There are several potential directions for future research. Firstly, we have mainly considered the
adaptive lasso penalty (Zou, 2006). It would be worthwhile to explore other sparsity penalty
forms such as the smoothly clipped absolute deviation penalty (Fan and Li, 2001) and the elastic
net penalty (Zou and Hastie, 2005). Secondly, the current methodology requires correct deter-
mination of the rank of the coefficient matrix. Motivated by Yuan et al. (2007), it is interesting
to extend our methodology to conduct simultaneous rank determination and sparse coefficient
estimation in multivariate modelling. The multiplicative penalty form that we have considered
not only promotes sparsity in the singular vectors; it also shrinks the singular values of each
SVD layer towards 0. Therefore, a promising approach is to set the rank to an upper bound
r (r* <r<min(p, g)) and then to fit the model via the penalized approach developed. Although
the singular vectors of the redundant layers are no longer identifiable, the penalty term (1.4)
for each k> r* can be expected to penalize the redundant layer to be exactly a zero matrix,
owing to its shrinkage effect on the singular value. Another interesting and pressing problem
concerns further extending the methodology and theory to high dimensional situations with
P = pn —> 00 Or g =g, — 00, as problems involving a huge number of responses or predictors
such as microarray analysis and genomewide association studies become increasingly common;
see the relevant works in the framework of the lasso and related estimators by Zhao and Yu
(2006), Zhang and Huang (2008) and the references therein.
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